Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Staiano, Andrea

  • Google
  • 8
  • 6
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2017A comparative study assessing the wear behaviour of different ceramic die materials during superplastic forming2citations
  • 2017Protective coatings for ceramic superplastic forming dies2citations
  • 2016Protective coatings for superplastic forming ceramic diescitations
  • 2014Thermal sprayed protective coatings for superplastic forming ceramic dies : a monitoring system of die conditioncitations
  • 2014Protective coatings for superplastic forming diescitations
  • 2014Protective coatings for superplastic forming ceramic diescitations
  • 2014Protective coatings for superplastic forming ceramic dies : opportunities for thermal spray technologycitations
  • 2014Thermal sprayed protective coatings for superplastic forming ceramic diescitations

Places of action

Chart of shared publication
Farrell, Mark
1 / 2 shared
Gomez-Gallegos, A. A.
1 / 6 shared
Zuelli, Nicola
3 / 11 shared
Ohare, L.
1 / 2 shared
Ion, William
7 / 14 shared
Ohare, Lynne
6 / 6 shared
Chart of publication period
2017
2016
2014

Co-Authors (by relevance)

  • Farrell, Mark
  • Gomez-Gallegos, A. A.
  • Zuelli, Nicola
  • Ohare, L.
  • Ion, William
  • Ohare, Lynne
OrganizationsLocationPeople

article

A comparative study assessing the wear behaviour of different ceramic die materials during superplastic forming

  • Farrell, Mark
  • Gomez-Gallegos, A. A.
  • Staiano, Andrea
  • Zuelli, Nicola
Abstract

Superplastic forming is an advanced manufacturing process where metallic sheets are heated to their superplastic region to be then blow formed within a die set. The process allows for the forming of complex parts but it is typically restricted to low volume production and high value pieces. Despite their brittle nature, ceramic dies are a developing technology for superplastic forming as they offer lower production costs and shorter lead times than conventional metallic dies, thus reducing process costs. This work presents a method to assess ceramic die wear by means of a novel test rig developed a at the Advance Forming Research Centre of the University of Strathclyde, Scotland, UK where the superplastic forming die-part interaction can be replicated at laboratory scale. Controllable normal load tests at standard superplastic forming conditions on three different reinforced ceramic materials are carried out with a view to understanding their wear mechanisms and to ultimately identify methods to improve their wear resistance.

Topics
  • impedance spectroscopy
  • wear resistance
  • compression test
  • forming
  • ceramic