People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mccoy, Stephen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Quantitative Structure‐Property Relations for Polyester Materials via Statistical Learning
Abstract
<jats:title>Abstract</jats:title><jats:p>Statistical learning is employed to present a principled framework for the establishment of quantitative structure‐property relationships (QSPR). Property predictions of industrial polymers formed by multiple reagents and at varying molecular weights are focused. A theoretical description of QSPR as well as a rigorous mathematical method is developed for the assimilation of experimental data. Results show that these methods can perform exceptionally well at establishing QSPR for glass transition temperature and intrinsic viscosity of polyesters.</jats:p>