People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mulder, T.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Equilibration and deformation of amorphous polystrene: scale-jumping simulational approach
Abstract
A polymer sample-preparation method (extended-chain condensation, ECC) based solely on molecular-dynamics simulations has been compared to a connectivity-altering Monte Carlo method (coarse-grained end-bridging, CGEB). Since the characteristic ratio for the CGEB samples is closer to the experimental value, ECC results in polymer structures that are too compact. The stress-strain relations are different in the strain-hardening regime. For CGEB samples, a stronger strain hardening is observed and the strain-hardening modulus is more realistic; for the CGEB polystyrene (PS) sample GR = 9 ± 1 MPa is found versus GR = 4 ± 2 MPa for the ECC samples. These differences have to be attributed to a steeper increase in the contributions to the total stress from bond- and dihedral angles for CGEB than for ECC samples.