Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Siddiqui, Mohammad Nahid

  • Google
  • 1
  • 4
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Effect of Natural Macromolecule Filler on the Properties of High‐Density Polyethylene (HDPE)14citations

Places of action

Chart of shared publication
Suliman, Munzir H.
1 / 1 shared
Achilias, Dimitrios S.
1 / 1 shared
Younas, Muhammad
1 / 12 shared
Redhwi, Halim Hamid
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Suliman, Munzir H.
  • Achilias, Dimitrios S.
  • Younas, Muhammad
  • Redhwi, Halim Hamid
OrganizationsLocationPeople

article

Effect of Natural Macromolecule Filler on the Properties of High‐Density Polyethylene (HDPE)

  • Suliman, Munzir H.
  • Achilias, Dimitrios S.
  • Younas, Muhammad
  • Siddiqui, Mohammad Nahid
  • Redhwi, Halim Hamid
Abstract

<jats:sec><jats:label /><jats:p>This study investigates the thermal and viscoelastic properties of High‐Density Polyethylene (HDPE) filled with the natural macromolecule, asphaltene, with different loading ratios. The thermal and viscoelastic properties of the composites are studied using DSC, WAXD and other mechanical techniques. The addition of 2.5 wt% asphaltenes presents a slightly higher degree of crystallinity compared to pristine HDPE. The addition of asphaltenes does not seem to alter significantly the mechanical tensile properties of the material, while only the composite with 2.5 wt% found to have improved tensile and yield strength. Specifically, the initial thermal degradation temperature increases by almost 40 °C as it came from TGA measurements where degradation of the composites shifted to higher values. In addition, the thermal degradation activation energy of HDPE and the composites is estimated assuming a first order kinetic model. The activation energy of neat HDPE is estimated to be 287 kJ mol<jats:sup>−1</jats:sup>, whereas that of the above‐mentioned composites significantly increases. This is another indication that the addition of asphaltenes into HDPE serve as a thermal barrier delaying the kinetics of the thermal degradation of the material. Inclusion of large amount of asphaltenes (i.e., 15%) results in a material presenting thermal degradation similar to pristine HDPE, with lower activation energy. Overall, from this study it comes that the optimum amount of asphaltenes that could be added to HDPE is around 2.5 wt% resulting in the best dispersion in the polymeric matrix, larger crystallite size, higher relative degree of crystallinity, somehow improves mechanical tensile properties and significantly enhances thermal stability.</jats:p></jats:sec>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • inclusion
  • strength
  • composite
  • thermogravimetry
  • differential scanning calorimetry
  • activation
  • yield strength
  • size-exclusion chromatography
  • crystallinity
  • degradation temperature