People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahaman, Mostafizur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Foam stability and thermo-mechanical properties of micro/nano filler loaded castor oil based flexible polyurethane foamcitations
- 2024Synthesis of Intrinsically‐Fluorescent Aliphatic Tautomeric Polymers for Proton‐Conductivity, Dual‐State Emission, and Sensing/Oxidation‐Reduction of Metal Ionscitations
- 2024Design of Novel Poly(Propranolol) Acrylate and Methacrylate Polymers through Radical Polymerization for Antibacterial Activity and Metal Ion Absorption
- 2023Insight into the Optoelectronic Nature and Mechanical Stability of Binary Chalcogenides: A First‐Principles Studycitations
- 2022High density polyethylene and metal oxides based nanocomposites for high voltage cable applicationcitations
- 2014Correlation of Polymerization Conditions with Thermal and Mechanical Properties of Polyethylenes Made with Ziegler-Natta Catalystscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of Intrinsically‐Fluorescent Aliphatic Tautomeric Polymers for Proton‐Conductivity, Dual‐State Emission, and Sensing/Oxidation‐Reduction of Metal Ions
Abstract
<jats:title>Abstract</jats:title><jats:p>Herein, fluorescent conducting tautomeric polymers (FCTPs) are developed by polymerizing 2‐methylprop‐2‐enoic acid (MPEA), methyl‐2‐methylpropenoate (MMP), <jats:italic>N</jats:italic>‐(propan‐2‐yl)prop‐2‐enamide (PPE), and in situ‐anchored 3‐(<jats:italic>N</jats:italic>‐(propan‐2‐yl)prop‐2‐enamido)‐2‐methylpropanoic acid (PPEMPA). Among as‐synthesized FCTPs, the most promising characteristics in FCTP3 are confirmed by NMR and Fourier transform infrared (FTIR) spectroscopies, luminescence enhancements, and computational studies. In FCTP3, <jats:italic>─</jats:italic>C(═O)NH<jats:italic>─</jats:italic>, −C(═O)N<, <jats:italic>─</jats:italic>C(═O)OH, and <jats:italic>─</jats:italic>C(═O)OCH3 subluminophores are identified by theoretical calculations and experimental analyses. These subluminophores facilitate redox characteristics, solid state emissions, aggregation‐enhanced emissions (AEEs), excited‐state intramolecular proton transfer (ESIPT), and conductivities in FCTP3. The ESIPT‐associated dual emission/AEEs of FCTP3 are elucidated by time correlated single photon counting (TCSPC) investigation, solvent polarity effects, concentration‐dependent emissions, dynamic light scattering (DLS) measurements, field emission scanning electron microscopy images, and computational calculations. The cyclic voltammetry measurements of FCTP3 indicate cumulative redox efficacy of <jats:italic>─</jats:italic>C(═O)OH, <jats:italic>─</jats:italic>C(═O)NH<jats:italic>─</jats:italic>/−C(═O)N<, <jats:italic>─</jats:italic>C(<jats:italic>─</jats:italic>O<jats:italic>─</jats:italic>)═NH+<jats:italic>─</jats:italic>/<jats:italic>─</jats:italic>C(<jats:italic>─</jats:italic>O<jats:italic>─</jats:italic>)═N+, and <jats:italic>─</jats:italic>C(═N)OH functionalities. In FCTP3, ESIPT‐associated dual‐emission enable in the selective detection of Cr(III)/Cu(II) at <jats:italic>λ</jats:italic><jats:sub>em1</jats:sub>/<jats:italic>λ</jats:italic><jats:sub>em2</jats:sub> with the limit of detection of 0.0343/0.079 ppb. The preferential interaction of Cr(III)/Cu(II) with FCTP3 (amide)/FCTP3 (imidol) and oxidation/reduction of Cr(III)/Cu(II) to Cr(VI)/Cu(I) are further supported by NMR‐titration; FTIR and X‐ray photoelectron spectroscopy analyses; TCSPC/electrochemical/DLS measurement; alongside theoretical calculations. The proton conductivity of FCTP3 is explored by electrochemical impedance spectroscopy and <jats:italic>I</jats:italic>–<jats:italic>V</jats:italic> measurements.</jats:p>