Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hizalan Ozsoy, Gonul

  • Google
  • 1
  • 6
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Design, Synthesis, and Theoretical Studies on the Benzoxadiazole and Thienopyrrole Containing Conjugated Random Copolymers for Organic Solar Cell Applications1citations

Places of action

Chart of shared publication
Oral, Pelin
1 / 1 shared
Ozcelik, Egemen
1 / 1 shared
Hacıefendioğlu, Tuğba
1 / 1 shared
Hacioglu, Serife Ozdemir
1 / 1 shared
Toppare, Levent
1 / 4 shared
Bicer, Umran Isil
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Oral, Pelin
  • Ozcelik, Egemen
  • Hacıefendioğlu, Tuğba
  • Hacioglu, Serife Ozdemir
  • Toppare, Levent
  • Bicer, Umran Isil
OrganizationsLocationPeople

article

Design, Synthesis, and Theoretical Studies on the Benzoxadiazole and Thienopyrrole Containing Conjugated Random Copolymers for Organic Solar Cell Applications

  • Oral, Pelin
  • Ozcelik, Egemen
  • Hacıefendioğlu, Tuğba
  • Hacioglu, Serife Ozdemir
  • Hizalan Ozsoy, Gonul
  • Toppare, Levent
  • Bicer, Umran Isil
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, six different donor‐π‐acceptor<jats:sub>1</jats:sub>‐π‐donor‐acceptor<jats:sub>2</jats:sub> type random co‐polymers containing benzodithiophene as a donor, benzooxadiazole (BO), and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) as acceptor, have been synthesized and characterized. In addition to the acceptor core ratio at different values, the effect of aromatic bridge structures on the optical, electronic, and photovoltaic properties of six different random co‐polymers is investigated by using thiophene and selenophene structures as aromatic bridge units. To investigate how the acceptor unit ratio and replacement of aromatic bridge units impact the structural, electronic, and optical properties of the polymers, density functional theory (DFT) calculations are carried out for the tetramer models. The open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>OC</jats:sub>), which is strongly correlated with the HOMO levels of the donor material, is enhanced with the increasing ratio of the TPD moiety. On the other hand, the short‐circuit current (<jats:italic>J</jats:italic><jats:sub>SC</jats:sub>), which is associated with the absorption ability of the donor material, is improved by the increasing ratio of BO moiety with the π‐bridges. BO moiety dominant selenophene π‐bridged co‐polymer (<jats:bold>P<jats:sub>4</jats:sub></jats:bold>) showed the best performance with a power conversion efficiency (PCE) of 6.26%, a <jats:italic>J</jats:italic><jats:sub>SC</jats:sub> of 11.44 mA cm<jats:sup>2</jats:sup>, a <jats:italic>V</jats:italic><jats:sub>OC</jats:sub> of 0.80 V, and a fill factor (FF) of 68.81%.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory
  • density functional theory
  • random
  • copolymer
  • power conversion efficiency
  • random copolymer