Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akacha, Rania

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 20241,3,4,5‐Tetrasubstituted Poly(1,2,3‐triazolium) Obtained through Metal‐Free AA+BB Polyaddition of a Diazide and an Activated Internal Dialkyne2citations

Places of action

Chart of shared publication
Drockenmuller, Eric
1 / 34 shared
Abdelhedimiladi, Imen
1 / 1 shared
Romdhane, Hatem Ben
1 / 1 shared
Serghei, Anatoli
1 / 29 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Drockenmuller, Eric
  • Abdelhedimiladi, Imen
  • Romdhane, Hatem Ben
  • Serghei, Anatoli
OrganizationsLocationPeople

document

1,3,4,5‐Tetrasubstituted Poly(1,2,3‐triazolium) Obtained through Metal‐Free AA+BB Polyaddition of a Diazide and an Activated Internal Dialkyne

  • Drockenmuller, Eric
  • Akacha, Rania
  • Abdelhedimiladi, Imen
  • Romdhane, Hatem Ben
  • Serghei, Anatoli
Abstract

<jats:title>Abstract</jats:title><jats:p>A tetra(ethylene glycol)‐based 1,3,4,5‐tetrasubstituted poly(1,2,3‐triazolium) is synthesized in two steps including: i) the catalyst‐free polyaddition of a diazide and an activated internal dialkyne and ii) the <jats:italic>N</jats:italic>‐alkylation of the resulting 1,2,3‐triazole groups. In order to provide detailed structure/properties correlations different analogs are also synthesized. First, parent poly(1,2,3‐triazole)s are obtained via AA+BB polyaddition using copper(I)‐catalyzed alkyne‐azide cycloaddition or metal‐free thermal alkyne‐azide cycloaddition (TAAC). Poly(1,2,3‐triazole)s with higher molar masses are obtained in higher yields by TAAC polyaddition. A 1,3,4‐trisubstituted poly(1,2,3‐triazolium) structural analog obtained by TAAC polyaddition using a terminal activated dialkyne and subsequent <jats:italic>N</jats:italic>‐alkylation of the 1,2,3‐triazole groups enables discussing the influence of the methyl group in the C‐4 or C‐5 position on thermal and ion conducting properties. Obtained polymers are characterized by <jats:sup>1</jats:sup>H, <jats:sup>13</jats:sup>C, and <jats:sup>19</jats:sup>F NMR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, size exclusion chromatography, and broadband dielectric spectroscopy. The targeted 1,3,4,5‐tetrasubstituted poly(1,2,3‐triazolium) exhibits a glass transition temperature of −23 °C and a direct current ionic conductivity of 2.0 × 10<jats:sup>−6</jats:sup> S cm<jats:sup>−1</jats:sup> at 30 °C under anhydrous conditions. The developed strategy offers opportunities to further tune the electron delocalization of the 1,2,3‐triazolium cation and the properties of poly(1,2,3‐triazolium)s using this additional substituent as structural handle.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • copper
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • Nuclear Magnetic Resonance spectroscopy
  • exclusion chromatography
  • alkyne