People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Théato, Patrick
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteriescitations
- 2024Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopycitations
- 2023Magnesium Polymer Electrolytes Based on the Polycarbonate Poly(2-butyl-2-ethyltrimethylene-carbonate)
- 2023Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chainscitations
- 2023Photoresponsive Spiropyran and DEGMA‐Based Copolymers with Photo‐Switchable Glass Transition Temperaturescitations
- 2023Poly(ethylene oxide)-grafted Polycarbonates as Solvent-free Polymer Electrolytes for Lithium-Metal Batteries
- 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bondscitations
- 2022Synthesis and Characterization of Novel Isosorbide‐Based Polyester Derivatives Decorated with α ‐Acyloxy Amidescitations
- 2022Synthesizing Polyethylene from Polyacrylates: A Decarboxylation Approachcitations
- 2021Synthesis and Post-Polymerization Modification of Poly(N-(4-Vinylphenyl)Sulfonamide)scitations
- 2020The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to applicationcitations
- 2020A CO$_{2}$-gated anodic aluminum oxide based nanocomposite membrane for de-emulsificationcitations
Places of action
Organizations | Location | People |
---|
article
Photoresponsive Spiropyran and DEGMA‐Based Copolymers with Photo‐Switchable Glass Transition Temperatures
Abstract
Herein, novel photoresponsive spiropyran (SP)-based P(DEGMA-co-SpMA) copolymers with variable percentages of SP fractions are synthesized. The SP group present in these polymers exhibited the abilities of reversible photoisomerism. Their photoresponsive, structural, and thermal properties have been investigated and compared using various characterization techniques. These light-responsive copolymers are found to exhibit photoswitchable glass transition temperature (T$_g$), high thermal stability (T$_d$ > 250°C), instant photochromism as well as fluorescence upon exposure to UV light. It is demonstrated that the T$_g$ of these synthesized polymers increased when irradiated with UV light (λ = 365 nm), as a consequence of the photoisomerization of incorporated SP groups into their merocyanine form. This increase in T$_g$ is attributed to an increase in polarity and a decrease in the overall entropy of the polymeric system when it switches from the ring-closed SP form (less-ordered state) to the ring-opened merocyanine form (more-ordered state). Therefore, such polymers with a unique feature of phototunable glass transition temperatures provide the possibility to be integrated into functional materials for various photoresponsive applications.