People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruns, Nico
Technical University of Darmstadt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fiberscitations
- 2023Synthesis of artificial cells via biocatalytic polymerisation-induced self-assembly
- 2023Artificial cell synthesis using biocatalytic polymerization-induced self-assemblycitations
- 2022Donor–acceptor stenhouse adduct-polydimethylsiloxane-conjugates for enhanced photoswitching in bulk polymerscitations
- 2021Nano‐3D‐printed photochromic micro‐objectscitations
- 2021Infiltration of proteins in cholesteric cellulose structurescitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteriescitations
- 2018Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damagecitations
- 2018DNA-coated functional oil dropletscitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Controlling enzymatic polymerization from surfaces with switchable bioaffinitycitations
- 2017Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTscitations
- 2016Protein cages and synthetic polymerscitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2014Polymeric particulates for subunit vaccine deliverycitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2012Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH 2-PS) by atom transfer radical polymerizationcitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
- 2011Phase behavior of vesicle-forming block copolymers in aqueous solutionscitations
- 2011Self-reporting materialscitations
- 2006Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matricescitations
Places of action
Organizations | Location | People |
---|
article
Donor–acceptor stenhouse adduct-polydimethylsiloxane-conjugates for enhanced photoswitching in bulk polymers
Abstract
Donor–acceptor Stenhouse adducts (DASAs) are a rapidly emerging class of visible light-activated photochromes and DASA-functionalized polymers hold great promise as biocompatible photoresponsive materials. However, the photoswitching performance of DASAs in solid polymer matrices is often low, particularly in materials below their glass transition temperature. To overcome this limitation, DASAs are conjugated to polydimethylsiloxanes which have a glass transition temperature far below room temperature and which can create a mobile molecular environment around the DASAs for achieving more solution-like photoswitching kinetics in bulk polymers. The dispersion of DASAs conjugated to such flexible oligomers into solid polymer matrices allows for more effective and tunable DASA photoswitching in stiff polymers, such as poly(methyl methacrylate), without requiring modifications of the matrix. The photoswitching of conjugates with varying polymer molecular weight, linker type, and architecture is characterized via time-dependent UV–vis spectroscopy in organic solvents and blended into polymethacrylate films. In addition, DASA-functionalized polydimethylsiloxane networks, accessible via the same synthetic route, provide an alternative solution for achieving fast and efficient DASA photoswitching in the bulk owing to their intrinsic softness and flexibility. These findings may contribute to the development of DASA-functionalized materials with better tunable, more effective, and more reversible modulation of their optical properties.