Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Osullivan, Aine

  • Google
  • 1
  • 8
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021An Intrinsically‐Adhesive Family of Injectable and Photo‐Curable Hydrogels with Functional Physicochemical Performance for Regenerative Medicine38citations

Places of action

Chart of shared publication
Nasrollahzadeh, Naser
1 / 2 shared
Moser, Christophe
1 / 5 shared
Bourban, Pierreetienne
1 / 1 shared
Procter, Philip
1 / 1 shared
Wyss, Céline
1 / 1 shared
Pioletti, Dominique P.
1 / 2 shared
Broome, Martin
1 / 1 shared
Karami, Peyman
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Nasrollahzadeh, Naser
  • Moser, Christophe
  • Bourban, Pierreetienne
  • Procter, Philip
  • Wyss, Céline
  • Pioletti, Dominique P.
  • Broome, Martin
  • Karami, Peyman
OrganizationsLocationPeople

article

An Intrinsically‐Adhesive Family of Injectable and Photo‐Curable Hydrogels with Functional Physicochemical Performance for Regenerative Medicine

  • Nasrollahzadeh, Naser
  • Moser, Christophe
  • Bourban, Pierreetienne
  • Procter, Philip
  • Wyss, Céline
  • Pioletti, Dominique P.
  • Osullivan, Aine
  • Broome, Martin
  • Karami, Peyman
Abstract

Attaching hydrogels to soft internal tissues is crucial for the development of various biomedical devices. Tough sticky hydrogel patches present high adhesion, yet with lack of injectability and the need for treatment of contacting surface. On the contrary, injectable and photo-curable hydrogels are highly attractive owing to their ease of use, flexibility of filling any shape, and their minimally invasive character, compared to their conventional preformed counterparts. Despite recent advances in material developments, a hydrogel that exhibits both proper injectability and sufficient intrinsic adhesion is yet to be demonstrated. Herein, a paradigm shift is proposed toward the design of intrinsically adhesive networks for injectable and photo-curable hydrogels. The bioinspired design strategy not only provides strong adhesive contact, but also results in a wide window of physicochemical properties. The adhesive networks are based on a family of polymeric backbones where chains are modified to be intrinsically adhesive to host tissue and simultaneously form a hydrogel network via a hybrid cross-linking mechanism. With this strategy, adhesion is achieved through a controlled synergy between the interfacial chemistry and bulk mechanical properties. The functionalities of the bioadhesives are demonstrated for various applications, such as tissue adhesives, surgical sealants, or injectable scaffolds.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • curing