Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Delgado, Jose D.

  • Google
  • 1
  • 3
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Precision Polyelectrolytes with Phenylsulfonic Acid Branches at Every Five Carbons15citations

Places of action

Chart of shared publication
Kendrick, Aaron
1 / 2 shared
Bohlmann, Michele
1 / 1 shared
Neary, William J.
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Kendrick, Aaron
  • Bohlmann, Michele
  • Neary, William J.
OrganizationsLocationPeople

article

Precision Polyelectrolytes with Phenylsulfonic Acid Branches at Every Five Carbons

  • Kendrick, Aaron
  • Bohlmann, Michele
  • Delgado, Jose D.
  • Neary, William J.
Abstract

<jats:title>Abstract</jats:title><jats:p>A precision polyethylene containing phenyl branches at every fifth carbon (<jats:italic>p</jats:italic>5Ph) is nearly quantitatively functionalized (≈95%) with sulfonic acid groups on the <jats:italic>para</jats:italic>‐position of each phenyl branch (<jats:italic>p</jats:italic>5PhS‐H). Unlike polystyrene sulfonate (PSS), <jats:italic>p</jats:italic>5PhS‐H has a glass transition temperature (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> = 109 °C) well below its thermal decomposition temperature (<jats:italic>T</jats:italic><jats:sub>d</jats:sub> ≈ 200 °C), making this new material capable of thermal processing into molds and films at temperatures between these thermal limits. Neutralization of the sulfonic acid groups with varying counter cations (Li<jats:sup>+</jats:sup>, Na<jats:sup>+</jats:sup>, Cs<jats:sup>+</jats:sup>) produces a new class of precision polyelectrolytes. Neutralization and increasing size of the counter cation improves the thermal decomposition temperature (<jats:italic>T</jats:italic><jats:sub>d</jats:sub>) to over 400 °C for the Cs<jats:sup>+</jats:sup> form. Neutralization causes <jats:italic>T</jats:italic><jats:sub>g</jats:sub> to increase above <jats:italic>T</jats:italic><jats:sub>d</jats:sub> for the Li<jats:sup>+</jats:sup> and Na<jats:sup>+</jats:sup> form. The Cs<jats:sup>+</jats:sup> form is found to have an accessible <jats:italic>T</jats:italic><jats:sub>g</jats:sub> = 294 °C. Further investigations of water absorption and the polyelectrolyte effect of these systems are discussed.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • glass
  • glass
  • glass transition temperature
  • thermal decomposition
  • thermal decomposition temperature