People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frey, Holger
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Supersoft Polymer Melts in Binary Blends of Bottlebrush cis‐1,4‐Polyfarnesene and cis‐1,4‐Polyisoprenecitations
- 2023Merging styrene and diene structures to a cyclic diene : anionic polymerization of 1-vinylcyclohexene (VCH)
- 2023Merging Styrene and Diene Structures to a Cyclic Diene: Anionic Polymerization of 1‐Vinylcyclohexene (VCH)citations
- 2023Bifunctional Carbanionic Synthesis of Fully Bio-Based Triblock Structures Derived from β-Farnesene and ll-Dilactide: Thermoplastic Elastomerscitations
- 2023Bifunctional Carbanionic Synthesis of Fully Bio-Based Triblock Structures Derived from β-Farnesene and ll-Dilactide: Thermoplastic Elastomers
- 2023Revealing the monomer gradient of polyether copolymers prepared using N‐heterocyclic olefins : metal‐free anionic versus zwitterionic Lewis pair polymerization
- 2023Bifunctional carbanionic synthesis of fully bio-based triblock structures derived from β-farnesene and LL-dilactide : thermoplastic elastomers
- 2022Glycidyl cinnamate : copolymerization with glycidyl ethers, in-situ NMR kinetics, and photocrosslinking
- 2022In situ kinetics reveal the influence of solvents and monomer structure on the anionic ring-opening copolymerization of epoxides
- 2020Efficiency Boosting of Surfactants with Poly(ethylene oxide)-Poly(alkyl glycidyl ether)s: A New Class of Amphiphilic Polymerscitations
- 2020Tapered copolymers of styrene and 4-vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films
- 2020Synthesis and Solution Processing of Nylon-5 Ferroelectric Thin Filmscitations
- 2020Synthesis and solution processing of nylon-5 ferroelectric thin films : the renaissance of odd-nylons?
- 2019Glycidyl tosylate: polymerization of a “non-polymerizable” monomer permits universal post-functionalization of polyethers
- 2019Solution-processed transparent ferroelectric nylon thin filmscitations
- 2017Acid-labile surfactants based on poly(ethyleneglycol), carbon dioxide and propylene oxidecitations
- 2016Oxidation-responsive and "clickable" poly(ethylene glycol) via copolymerization of 2-(methylthio)ethyl glycidyl ethercitations
- 2016Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymerscitations
- 2016Hierachical Ni@Fe2O3 superparticles through epitaxial growth of gamma-Fe2O3 nanorods on in situ formed Ni nanoplatescitations
- 2016Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymerscitations
- 2014Stimuli-Responsive Tertiary Amine Functional PEGs Based on N,N-Dialkylglycidylaminescitations
- 2014Ferrocene-containing multifunctional polyetherscitations
- 2013Enlarging the toolboxcitations
- 2013Ferrocenyl glycidyl ethercitations
- 2011Rapid access to polyfunctional lipids with complex architecture via oxyanionic ring-opening polymerizationcitations
- 2011PEG-based multifunctional polyethers with highly reactive vinyl-ether side chains for click-type functionalizationcitations
- 2010"Functional poly(ethylene glycol)"citations
- 2008Carbanions on tap - Living anionic polymerization in a microstructured reactorcitations
- 2008Ionic polymerizations in microstructured reactors
Places of action
Organizations | Location | People |
---|
article
Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers
Abstract
<p>Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (M<sub>n,total</sub> = 6600, 8000, 9150 g·mol<sup>-1</sup>; M<sub>n,PEO</sub> = 2200, 3600, 4750 g·mol<sup>-1</sup>) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (η = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." A novel class of acid-cleavable surfactants based on a PEO-b-PPO-b-PEO substructure with two acetal moieties at the block junctions is introduced in this work. The acid-labile poloxamer analogs are employed as surfactants in miniemulsion polymerization (MEP) to fabricate well-defined polystyrene nanoparticles. Susceptibility of the acetal junctions to acidic hydrolysis enables cleavage of the surfactant subsequent to the MEP, affording surfactant-free nanoparticles.</p>