People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Renggli, Kasper
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2016Protein cages and synthetic polymerscitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
Horseradish peroxidase as a catalyst for atom transfer radical polymerization
Abstract
<p>The hemoprotein horseradish peroxidase (HRP) catalyzes the polymerization of N-isopropylacrylamide with an alkyl bromide initiator under conditions of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in the absence of any peroxide. This is a novel activity of HRP, which we propose to name ATRPase activity. Bromine-terminated polymers with polydispersity indices (PDIs) as low as 1.44 are obtained. The polymerization follows first order kinetics, but the evolution of molecular weight and the PDI upon increasing conversion deviate from the results expected for an ATRP mechanism. Conversion, M̄ <sub>n</sub> and PDI depend on the pH and on the concentration of the reducing agent, sodium ascorbate. HRP is stable during the polymerization and does not unfold or form conjugates.</p>