People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sai, Hiroaki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbonecitations
- 2023Directed Self-Assembly of Diamond Networks in Triblock Terpolymer Films on Patterned Substratescitations
- 2013Towards mesoporous Keggin-type polyoxometalates-systematic study on organic template removalcitations
- 2012A silica sol-gel design strategy for nanostructured metallic materialscitations
- 2010Block copolymer directed nanoporous metal thin filmscitations
- 2009Metal nanoparticle - block copolymer composite assembly and disassemblycitations
Places of action
Organizations | Location | People |
---|
article
Block copolymer directed nanoporous metal thin films
Abstract
<p>Porous metal thin films have high potential for use in applications such as catalysis, electrical contacts, plasmonics, as well as energy storage and conversion. Structuring metal thin films on the nanoscale to generate high surface areas poses an interesting challenge as metals have high surface energy. In this communication, we demonstrate direct access to nanostructured metal nanoparticle hybrid thin films with high nanoparticle loadings through spin coating of a mixture of block copolymer and ligand stabilized platinum and palladium nanoparticles. Plasma cleaning to remove the organics results in a conductive metal thin film. We expect that the methods described here can be generalized to other metals, mixtures of metal nanoparticles, and intermetallics. We report on direct access to nanoporous metal thin films using block copolymer self-assembly. Nanostructured metal nanoparticle hybrid thin films with high nanoparticle loadings were generated through spin coating of a mixture of block copolymer and ligand stabilized platinum and palladium nanoparticles. Plasma cleaning to remove the organics results in a conductive metal thin film. We expect that the methods described here can be generalized to other metals, mixtures of metal nanoparticles and intermetallics.</p>