Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sai, Hiroaki

  • Google
  • 6
  • 43
  • 217

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Hybrid Bonding Bottlebrush Polymers Grafted from a Supramolecular Polymer Backbone6citations
  • 2023Directed Self-Assembly of Diamond Networks in Triblock Terpolymer Films on Patterned Substrates5citations
  • 2013Towards mesoporous Keggin-type polyoxometalates-systematic study on organic template removal15citations
  • 2012A silica sol-gel design strategy for nanostructured metallic materials113citations
  • 2010Block copolymer directed nanoporous metal thin films23citations
  • 2009Metal nanoparticle - block copolymer composite assembly and disassembly55citations

Places of action

Chart of shared publication
Egner, Simon A.
1 / 1 shared
Yang, Yang
1 / 26 shared
Gianneschi, Nathan C.
1 / 5 shared
Syrgiannis, Zois
1 / 7 shared
Palmer, Liam C.
1 / 1 shared
Stupp, Samuel I.
1 / 3 shared
Grzybek, Joseph
1 / 1 shared
Roan, Joshua J.
1 / 1 shared
Sun, Hao
1 / 4 shared
Wiesner, Ulrich B.
1 / 1 shared
Yuasa, Takeshi
1 / 1 shared
Jinnai, Butsurin
1 / 1 shared
Musya, Michimasa
1 / 1 shared
Fukami, Shunsuke
1 / 4 shared
Iseli, René
1 / 2 shared
Abdelrahman, Doha
1 / 1 shared
Saba, Matthias
1 / 4 shared
Gunkel, Ilja
1 / 11 shared
Llandro, Justin
1 / 5 shared
Wilts, Bodo
1 / 2 shared
Steiner, Ullrich
1 / 42 shared
Lunkenbein, Thomas
1 / 13 shared
Breu, Josef
1 / 21 shared
Wiesner, Ulrich
4 / 19 shared
With, Sebastian
1 / 1 shared
Schieder, Martin
1 / 1 shared
Kamperman, Marleen
4 / 26 shared
Li, Zihui
4 / 5 shared
Förster, Stephan
1 / 11 shared
Disalvo, Francis J.
1 / 5 shared
Warren, Scott C.
3 / 5 shared
Arora, Hitesh
3 / 3 shared
Zwanziger, Josef W.
1 / 1 shared
Adams, Ashley M.
1 / 1 shared
Werner, Jörg
1 / 1 shared
Perkins, Matthew R.
1 / 1 shared
Grätzel, Michael
1 / 38 shared
Song, Juho
1 / 1 shared
Werner-Zwanziger, Ulrike
1 / 3 shared
Burns, Andrew A.
1 / 1 shared
Herz, Erik
1 / 1 shared
Suteewong, Teeraporn
1 / 1 shared
Gruner, Sol M.
1 / 3 shared
Chart of publication period
2024
2023
2013
2012
2010
2009

Co-Authors (by relevance)

  • Egner, Simon A.
  • Yang, Yang
  • Gianneschi, Nathan C.
  • Syrgiannis, Zois
  • Palmer, Liam C.
  • Stupp, Samuel I.
  • Grzybek, Joseph
  • Roan, Joshua J.
  • Sun, Hao
  • Wiesner, Ulrich B.
  • Yuasa, Takeshi
  • Jinnai, Butsurin
  • Musya, Michimasa
  • Fukami, Shunsuke
  • Iseli, René
  • Abdelrahman, Doha
  • Saba, Matthias
  • Gunkel, Ilja
  • Llandro, Justin
  • Wilts, Bodo
  • Steiner, Ullrich
  • Lunkenbein, Thomas
  • Breu, Josef
  • Wiesner, Ulrich
  • With, Sebastian
  • Schieder, Martin
  • Kamperman, Marleen
  • Li, Zihui
  • Förster, Stephan
  • Disalvo, Francis J.
  • Warren, Scott C.
  • Arora, Hitesh
  • Zwanziger, Josef W.
  • Adams, Ashley M.
  • Werner, Jörg
  • Perkins, Matthew R.
  • Grätzel, Michael
  • Song, Juho
  • Werner-Zwanziger, Ulrike
  • Burns, Andrew A.
  • Herz, Erik
  • Suteewong, Teeraporn
  • Gruner, Sol M.
OrganizationsLocationPeople

article

Block copolymer directed nanoporous metal thin films

  • Sai, Hiroaki
  • Warren, Scott C.
  • Wiesner, Ulrich
  • Kamperman, Marleen
  • Li, Zihui
  • Arora, Hitesh
Abstract

<p>Porous metal thin films have high potential for use in applications such as catalysis, electrical contacts, plasmonics, as well as energy storage and conversion. Structuring metal thin films on the nanoscale to generate high surface areas poses an interesting challenge as metals have high surface energy. In this communication, we demonstrate direct access to nanostructured metal nanoparticle hybrid thin films with high nanoparticle loadings through spin coating of a mixture of block copolymer and ligand stabilized platinum and palladium nanoparticles. Plasma cleaning to remove the organics results in a conductive metal thin film. We expect that the methods described here can be generalized to other metals, mixtures of metal nanoparticles, and intermetallics. We report on direct access to nanoporous metal thin films using block copolymer self-assembly. Nanostructured metal nanoparticle hybrid thin films with high nanoparticle loadings were generated through spin coating of a mixture of block copolymer and ligand stabilized platinum and palladium nanoparticles. Plasma cleaning to remove the organics results in a conductive metal thin film. We expect that the methods described here can be generalized to other metals, mixtures of metal nanoparticles and intermetallics.</p>

Topics
  • nanoparticle
  • porous
  • surface
  • thin film
  • Platinum
  • intermetallic
  • copolymer
  • block copolymer
  • self-assembly
  • surface energy
  • palladium
  • spin coating