Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Luoma, Enni

  • Google
  • 7
  • 16
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Development and Characterization of Poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cowpea Lignocellulosic Fibers as a Filler via Injection Molding and Extrusion Film-Casting2citations
  • 2023Properties of Bio-Composite Packaging Materials Developed Using Cowpea Lignocellulosic Sidestream as a Fillercitations
  • 2023Agricultural sidestream as a biomaterial commodity: opportunities and challengescitations
  • 2023Effect of accelerated aging on properties of biobased polymer films applicable in printed electronics3citations
  • 2023Faba bean lignocellulosic sidestream as a filler for the development of biodegradable packaging10citations
  • 2022Poly(butylene succinate-co-adipate)/poly(hydroxybutyrate) blend films and their thermal, mechanical and gas barrier properties15citations
  • 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronics33citations

Places of action

Chart of shared publication
Emmambux, M. Naushad
4 / 4 shared
Ray, Suprakas Sinha
2 / 5 shared
Sharmin, Nusrat
4 / 11 shared
Keränen, Janne T.
4 / 7 shared
Tribot, Amélie
5 / 15 shared
Masanabo, Mondli Abednicko
4 / 4 shared
Sivertsvik, Morten
4 / 5 shared
Virkajärvi, Jussi
1 / 4 shared
Välimäki, Marja
2 / 7 shared
Immonen, Kirsi
2 / 29 shared
Nättinen, Kalle
1 / 14 shared
Rokkonen, Teijo
2 / 6 shared
Lahtinen, Jussi
1 / 4 shared
Sääskilahti, Hannu
1 / 1 shared
Rekilä, Jari
1 / 1 shared
Ollila, Jyrki
1 / 8 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Emmambux, M. Naushad
  • Ray, Suprakas Sinha
  • Sharmin, Nusrat
  • Keränen, Janne T.
  • Tribot, Amélie
  • Masanabo, Mondli Abednicko
  • Sivertsvik, Morten
  • Virkajärvi, Jussi
  • Välimäki, Marja
  • Immonen, Kirsi
  • Nättinen, Kalle
  • Rokkonen, Teijo
  • Lahtinen, Jussi
  • Sääskilahti, Hannu
  • Rekilä, Jari
  • Ollila, Jyrki
OrganizationsLocationPeople

article

Development and Characterization of Poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Cowpea Lignocellulosic Fibers as a Filler via Injection Molding and Extrusion Film-Casting

  • Emmambux, M. Naushad
  • Ray, Suprakas Sinha
  • Sharmin, Nusrat
  • Keränen, Janne T.
  • Luoma, Enni
  • Tribot, Amélie
  • Masanabo, Mondli Abednicko
  • Sivertsvik, Morten
  • Virkajärvi, Jussi
Abstract

Biodegradable poly(butylene succinate-co-adipate)/Poly(3-hydroxybutyrate-co-3-hydoxyvalerate) (PBSA/PHBV) filled with lignocellulosic sidestream/fibers from cowpea, a neglected and underutilized African crop are produced by injection molding and extrusion film casting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) suggests that the fibers have more affinity and interfacial interaction with PBSA than PHBV. This is shown by a decrease in dampening of PBSA and an increase in dampening of PHBV with fiber addition. In addition, fiber addition results in more homogeneous crystal morphology of PBSA, while resulting in more heterogeneous crystal morphology of PHBV. The tensile strength of injection molded bio-composites increases with fiber addition due to good interfacial adhesion between the matrix and fibers revealed by scanning electron microscope. In contrast, the tensile strength of bio-composite films decreases with fiber addition due to the high-volume fraction of pores in bio-composite films that act as stress raisers. The stiffness of both injection molded, and bio-composite films increase with fiber addition, as revealed by an increase in Young's modulus and storage modulus, while the tensile strain decreases. In conclusion, low-value cowpea sidestream can be used as a filler to produce injection molded bio-composites and bio-composite films for potential application as rigid and flexible packaging.

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • extrusion
  • strength
  • composite
  • differential scanning calorimetry
  • casting
  • tensile strength
  • interfacial
  • injection molding
  • dynamic mechanical analysis