People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tretsiakova-Mcnally, Svetlana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Enhancing Fire Retardance of Styrenic Polymers Through a Ter-Polymerization Route
- 2024The Effects of Nitrogen-Containing Monomers on the Thermal Degradation and Combustion Attributes of Polystyrenes Chemically Modified with Phosphonate Groupscitations
- 2023Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenescitations
- 2023Separation and Characterization of Plastic Waste Packaging Contaminated with Food Residuescitations
- 2023A STUDY OF THE INFLUENCE OF THE CHEMICAL ENVIRONMENTS OF P‐ AND N‐CONTAINING GROUPS ON THE FIRE RETARDANCE OF POLYSTYRENE
- 2022Thermal Decomposition of Styrenic Polymers Modified with Covalently Bound P- and N-containing Groups: Analysis of the Gaseous-Phase Mechanism
- 2022Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenescitations
- 2022Low-cost alternative water treatment for removal of PPCPs in Lagos wastewater, Nigeria
- 2022Thermal and calorimetric investigations of some phosphorus-modified chain growth polymers 2: Polystyrenecitations
- 2021Phosphorus-Nitrogen Synergism in Fire Retarding Styrenic Polymers: Some Preliminary Studies
- 2020A Kinetic Analysis of the Thermal Degradation Behaviours of Some Bio-Based Substratescitations
- 2019Passive Fire Protection of Wood Substrates using Starch-based Formulations
- 2019A Study of the Thermal Degradation and Combustion Characteristics of Some Materials Commonly Used in the Construction Sectorcitations
- 2018Thermal and Calorimetric Evaluations of Polyacrylonitrile Containing Covalently-Bound Phosphonate Groupscitations
- 2017Structural studies of thermally stable, combustion-resistant polymer compositescitations
- 2016Development of resilient and environmentally responsible highway infrastructure solutions using geopolymer cement concrete
- 2015Geopolymer Cement Concrete - An Emerging Technology for the Delivery of Resilient Highway Infrastructure Solutions
- 2015A state of the art review into the use of geopolymer cement for road applicationscitations
Places of action
Organizations | Location | People |
---|
article
The Effects of Nitrogen-Containing Monomers on the Thermal Degradation and Combustion Attributes of Polystyrenes Chemically Modified with Phosphonate Groups
Abstract
<p>In the present study, polystyrene (PS) is chemically modified with diethyl(acryloyloxymethyl)phosphonate (DEAMP) and an N-containing monomer, selected from different classes of compounds, via a ter-polymerization route; thus, exploring possible P–N synergistic effects on fire retardance of the base polymer. The successful incorporation of P and N monomeric units is confirmed by Fourier Transform Infrared (FT-IR),<sup>1</sup>H and<sup>31</sup>P Nuclear Magnetic Resonance (NMR) spectroscopies. The thermal degradation and combustion attributes of modified polymeric materials are measured using standard techniques, including Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), “bomb” calorimetry, and Pyrolysis Combustion Flow Calorimetry (PCFC). The thermal and combustion studies demonstrate that the thermal stability and combustion characteristics of styrenic polymers are significantly altered by the presence of even nominal amounts of P- and N-containing groups, and in certain cases, synergistic interactions of these groups are also evident. For instance, as revealed by TGA, the extent of char formation, under the oxidative atmosphere, in the prepared ter-polymers, is enhanced by 16–44%, when compared to the unmodified PS. The heat release rates and heat release capacities of ter-polymers, measured using the PCFC technique, are reduced by 18–50%, in comparison to the same parameters obtained for the unmodified counterpart.</p>