People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Henderson, Luke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Exploring Inverse Vulcanized Dicyclopentadiene As a Polymer Matrix for Carbon Fiber Compositescitations
- 2023Promoting Silk Fibroin Adhesion to Stainless Steel Surfaces by Interface Tailoringcitations
- 2023Imbuing carbon fibers with electrochemical storage properties without compromising fiber‐to‐matrix adhesioncitations
- 2023Solvent-free Surface Modification of Milled Carbon Fiber using Resonant Acoustic Mixing
- 2023Using Nitroxides to Enhance Carbon Fiber Interfacial Adhesion and as an Anchor for “Graft to” Surface Modification Strategiescitations
- 2023Bioinspired Hard–Soft Interface Management for Superior Performance in Carbon Fibre Compositescitations
- 2021A comparison of compression molded and additively manufactured short carbon fiber reinforced polyamide‐6 samples and the effect of different infill printing patternscitations
- 2020Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fiber-epoxy compositescitations
- 2020Rapid cross-linking of epoxy thermosets induced by solvate ionic liquids
- 2019Fiber with Butterfly Wings: Creating Colored Carbon Fibers with Increased Strength, Adhesion, and Reversible Malleabilitycitations
- 2019Carbon Fibers and Their Composite Materials
Places of action
Organizations | Location | People |
---|
article
Exploring Inverse Vulcanized Dicyclopentadiene As a Polymer Matrix for Carbon Fiber Composites
Abstract
<jats:title>Abstract</jats:title><jats:p>Inverse vulcanization of waste or renewable dienes has generated materials with phenomenal properties across a spectrum of applications. Nevertheless, the use of these materials for structural applications remains a challenge. Here, the use of an inverse vulcanized cyclopentadiene polymer as a resin for carbon fiber reinforced composites is explored. The dynamic S<jats:italic>─</jats:italic>S bonds in the polymer matrix are used to repair composite specimens over 5 generations by heating the material to 140 °C. A range of composites are manufactured and evaluated for their flexural properties, using a range of fiber orientations. Finally, this polymer is used to reinforce a carbon fiber fabric composed entirely of reclaimed materials, constituting a composite entirely composed of waste materials and second life carbon fibers.</jats:p>