Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vogt, Malte

  • Google
  • 1
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Reprocessable Vanillin‐Based Schiff Base Vitrimers: Tuning Mechanical and Thermomechanical Properties by Network Design10citations

Places of action

Chart of shared publication
Abetz, Volker
1 / 9 shared
Klein, Florian Christoffer
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abetz, Volker
  • Klein, Florian Christoffer
OrganizationsLocationPeople

article

Reprocessable Vanillin‐Based Schiff Base Vitrimers: Tuning Mechanical and Thermomechanical Properties by Network Design

  • Abetz, Volker
  • Klein, Florian Christoffer
  • Vogt, Malte
Abstract

<jats:title>Abstract</jats:title><jats:p>Bio‐based polymer building blocks derived from abundant biomass represent a promising class of monomers for the synthesis of sustainable high‐performance polymers. Lignin‐derived vanillin is used as a bio‐based, aromatic molecular platform for chemical modifications. The use of vanillin aldehyde derivatives as monomers with different alkyl chain length, cured with bio‐based and less‐toxic di‐ and triamines, leads to covalent adaptable Schiff base networks and thus enables sustainable and thermally reprocessable high‐performance materials without using highly toxic amines. A process is presented to prepare homogeneous films of crosslinked materials that are thermally reprocessable while maintaining their mechanical performance. The network structures, mechanical properties, and thermal stability of the obtained polymeric sheets are characterized in detail. By systematically adjusting the composition of the network building blocks, the mechanical properties could be varied from tough materials with a high elastic modulus of 1.6 GPa to materials with high flexibility and elastomeric behavior with an elongation at break of 400%. Furthermore, the stress–relaxation behavior of stoichiometric and nonstoichiometric Schiff base vitrimers is investigated. The combination of bio‐based building blocks and the degradability of Schiff base networks under acidic conditions resulted in sustainable, environmentally friendly, chemically and thermomechanically recyclable vitrimers with self‐healing and shape‐memory properties.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • laser emission spectroscopy
  • lignin
  • amine
  • aldehyde