People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aberoumand, Mohammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 20244D printing and annealing of PETG composites reinforced with short carbon fiberscitations
- 2024Influence of Programming and Recovery Parameters on Compressive Behaviors of 4D‐Printed Biocompatible Polyvinyl Chloride or Vinyl–Poly(ε‐Caprolactone) Blendscitations
- 2024Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D-printed ABS-TPU blends by FDMcitations
- 20244D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performancecitations
- 20234D Printing‐Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performancescitations
- 2023Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro‐ and Micro‐Structural Propertiescitations
- 2023Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodologycitations
- 20234D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performancecitations
- 2022A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structurescitations
- 2021Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Partscitations
- 20214D Printing by Fused Deposition Modeling (FDM)citations
Places of action
Organizations | Location | People |
---|
article
4D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performance
Abstract
<jats:title>Abstract</jats:title><jats:p>In this research, polyvinyl chloride (PVC) with excellent shape‐memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab‐made filament from PVC granules is introduced. Macro‐ and microstructural features of 3D printed PVC are investigated by means of wide‐angle X‐ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape‐memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> −45 °C), warm (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> −15 °C), and hot (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> +15 °C) and two load holding times of 0 s, and 600 s under three‐point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape‐memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state‐of‐the‐art shape‐memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape‐memory PVC‐based structures.</jats:p>