Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Panoskaltsis-Mortari, Angela

  • Google
  • 4
  • 47
  • 96

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Extracellular Matrix Microparticles Improve GelMA Bioink Resolution for 3D Bioprinting at Ambient Temperature17citations
  • 2020Facilitating resolution of life-threatening acute GVHD with human chorionic gonadotropin and epidermal growth factor28citations
  • 2020Plasma Short Chain Fatty Acids As a Predictor of Response to Therapy for Life-Threatening Acute Graft-Versus-Host Disease4citations
  • 2018Human CD19-Targeted Mouse T Cells Induce B Cell Aplasia and Toxicity in Human CD19 Transgenic Mice47citations

Places of action

Chart of shared publication
Vogt, Caleb D.
1 / 1 shared
Helms, Haylie R.
1 / 1 shared
Galliger, Zachary
1 / 1 shared
Bachanova, Veronika
1 / 1 shared
Brunstein, Claudio G.
1 / 1 shared
Miller, Jeffrey S.
2 / 2 shared
Rashidi, Armin
2 / 3 shared
Ustun, Celalettin
1 / 1 shared
Slungaard, Arne
1 / 1 shared
Weisdorf, Daniel
1 / 1 shared
Warlick, Erica D.
1 / 1 shared
Gandhi, Isha
2 / 3 shared
Macmillan, Margaret L.
2 / 2 shared
Blazar, Bruce R.
3 / 4 shared
Betts, Brian C.
2 / 2 shared
Shabaneh, Ashraf
1 / 1 shared
Vercellotti, Gregory M.
1 / 2 shared
Hoeschen, Andrea L.
1 / 1 shared
Jurdi, Najla El
1 / 1 shared
Cao, Qing
2 / 2 shared
He, Fiona
1 / 1 shared
Jacobson, Pamala Ann
1 / 1 shared
Arora, Mukta
1 / 1 shared
Wagner, John E.
1 / 1 shared
Wang, Jinhua
1 / 4 shared
Gandhi, Parth
1 / 1 shared
Hoeschen, Andrea
1 / 1 shared
Khoruts, Alexander
1 / 1 shared
Weisdorf, Daniel J.
1 / 1 shared
Mosher, Wes
1 / 1 shared
Jurdi, Najla H. El
1 / 1 shared
Holtan, Shernan G.
1 / 1 shared
Chen, Chi
1 / 2 shared
Mcdonald-Hyman, Cameron S.
1 / 1 shared
Xiong, Zhengming
1 / 1 shared
Pennell, Christopher A.
1 / 1 shared
Barnum, Jessie L.
1 / 1 shared
Jensen, Michael C.
1 / 1 shared
Kean, Leslie S.
1 / 1 shared
Refaeli, Yosef
1 / 1 shared
Osborn, Mark
1 / 1 shared
Furlan, Scott N.
1 / 3 shared
Loschi, Michael
1 / 1 shared
Thangavelu, Govindarajan
1 / 1 shared
Campbell, Heather M.
1 / 1 shared
Riddle, Megan J.
1 / 2 shared
Storlie, Meghan D.
1 / 1 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Vogt, Caleb D.
  • Helms, Haylie R.
  • Galliger, Zachary
  • Bachanova, Veronika
  • Brunstein, Claudio G.
  • Miller, Jeffrey S.
  • Rashidi, Armin
  • Ustun, Celalettin
  • Slungaard, Arne
  • Weisdorf, Daniel
  • Warlick, Erica D.
  • Gandhi, Isha
  • Macmillan, Margaret L.
  • Blazar, Bruce R.
  • Betts, Brian C.
  • Shabaneh, Ashraf
  • Vercellotti, Gregory M.
  • Hoeschen, Andrea L.
  • Jurdi, Najla El
  • Cao, Qing
  • He, Fiona
  • Jacobson, Pamala Ann
  • Arora, Mukta
  • Wagner, John E.
  • Wang, Jinhua
  • Gandhi, Parth
  • Hoeschen, Andrea
  • Khoruts, Alexander
  • Weisdorf, Daniel J.
  • Mosher, Wes
  • Jurdi, Najla H. El
  • Holtan, Shernan G.
  • Chen, Chi
  • Mcdonald-Hyman, Cameron S.
  • Xiong, Zhengming
  • Pennell, Christopher A.
  • Barnum, Jessie L.
  • Jensen, Michael C.
  • Kean, Leslie S.
  • Refaeli, Yosef
  • Osborn, Mark
  • Furlan, Scott N.
  • Loschi, Michael
  • Thangavelu, Govindarajan
  • Campbell, Heather M.
  • Riddle, Megan J.
  • Storlie, Meghan D.
OrganizationsLocationPeople

article

Extracellular Matrix Microparticles Improve GelMA Bioink Resolution for 3D Bioprinting at Ambient Temperature

  • Vogt, Caleb D.
  • Helms, Haylie R.
  • Galliger, Zachary
  • Panoskaltsis-Mortari, Angela
Abstract

<p>Introduction: Current bioinks for 3D bioprinting, such as gelatin-methacryloyl, are generally low viscosity fluids at room temperature, requiring specialized systems to create complex geometries. Methods and Results: Adding decellularized extracellular matrix microparticles derived from porcine tracheal cartilage to gelatin-methacryloyl creates a yield stress fluid capable of forming self-supporting structures. This bioink blend performs similarly at 25 °C to gelatin-methacryloyl alone at 15 °C in linear resolution, print fidelity, and tensile mechanics. Conclusion: This method lowers barriers to manufacturing complex tissue geometries and removes the need for cooling systems.</p>

Topics
  • viscosity
  • forming