People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baniasadi, Hossein
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Polypyrrole-modified flax fiber sponge impregnated with fatty acids as bio-based form-stable phase change materials for enhanced thermal energy storage and conversioncitations
- 2024Fabrication of biocomposite materials with polycaprolactone and activated carbon extracted from agricultural wastecitations
- 2024Exploring the potential of regenerated Ioncell fiber composites: a sustainable alternative for high-strength applicationscitations
- 2024Elucidating the enduring transformations in cellulose-based carbon nanofibers through prolonged isothermal treatmentcitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2024Recycled carbon fiber reinforced composites: Enhancing mechanical properties through co-functionalization of carbon nanotube-bonded microfibrillated cellulosecitations
- 2024A cradle-to-gate life cycle assessment of polyamide-starch biocomposites: carbon footprint as an indicator of sustainabilitycitations
- 2023Strontium-Substituted Nanohydroxyapatite-Incorporated Poly(lactic acid) Composites for Orthopedic Applications: Bioactive, Machinable, and High-Strength Propertiescitations
- 2023Flexible and conductive nanofiber textiles for leakage-free electro-thermal energy conversion and storagecitations
- 2023Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textilescitations
- 2023High-concentration lignin biocomposites with low-melting point biopolyamidecitations
- 2023Innovative integration of pyrolyzed biomass into polyamide 11: Sustainable advancements through in situ polymerization for enhanced mechanical, thermal, and additive manufacturing propertiescitations
- 2021Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerizationcitations
- 2021Sustainable composites of surface-modified cellulose with low-melting point polyamidecitations
- 2021Novel long-chain aliphatic polyamide/surface-modified silicon dioxide nanocomposites: in-situ polymerization and propertiescitations
- 2021Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineeringcitations
- 2021Selective Laser Sintering of Lignin-Based Compositescitations
- 20213D-Printed Thermoset Biocomposites Based on Forest Residues by Delayed Extrusion of Cold Masterbatch (DECMA)citations
- 2021High-Performance and Biobased Polyamide/Functionalized Graphene Oxide Nanocomposites through In Situ Polymerization for Engineering Applicationscitations
- 2015Investigation of thermomechanical properties of UHMWPE/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerizationcitations
Places of action
Organizations | Location | People |
---|
article
High-Performance and Biobased Polyamide/Functionalized Graphene Oxide Nanocomposites through In Situ Polymerization for Engineering Applications
Abstract
In this study, biobased polyamide/functionalized graphene oxide (PA-FGO) nanocomposite is developed using sustainable resources. Renewable PA is synthesized via polycondensation of hexamethylenediamine (HMDA) and biobased tetradecanedioic acid. Furthermore, GO is functionalized with HMDA to improve its compatibility with biobased PA and in situ polymerization is employed to obtain homogeneous PA-FGO nanocomposites. Compatibility improvement provides simultaneous increases in the tensile strength, storage modulus, and conductivity of PA by adding only 2 wt% FGO (PA-FGO2). The tensile strength and storage modulus of PA-FGO2 nanocomposite are enhanced dramatically by ≈50% and 30%, respectively, and the electrical conductivity reached 3.80 × 10–3 S m−1. In addition, rheology testing confirms a shear-thinning trend for all samples as well as a significant enhancement in the storage modulus upon increasing the FGO content due to a rigid network formation and strong polymer-filler interactions. All these improvements strongly support the excellent compatibility and enhanced interfacial interactions between organic–inorganic phases resulting from GO surface functionalization. It is expected that the biobased PA-FGO nanocomposites with remarkable thermomechanical properties developed here can be used to design high-performance structures for demanded engineering applications.