People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ren, Guogang
University of Hertfordshire
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Enhanced photocatalytic degradation of diazinon using Ni:ZnO/Fe3O4 nanocomposite under solar lightcitations
- 2024Structural and thermal analyses in semiconducting and metallic zigzag single-walled carbon nanotubes using molecular dynamics simulationscitations
- 2024Structural and thermal analyses in semiconducting and metallic zigzag single-walled carbon nanotubes using molecular dynamics simulations
- 2023Exploring mesoporous silica nanoparticles as oral insulin carriers: In-silico and in vivo evaluationcitations
- 2021Exploiting the antiviral potential of intermetallic nanoparticlescitations
- 2021Antiviral Efficacy of Metal and Metal Oxide Nanoparticles against the Porcine Reproductive and Respiratory Syndrome Viruscitations
- 2021Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skins
- 2020Comparative Study of the Antimicrobial Effects of Tungsten Nanoparticles and Tungsten Nanocomposite Fibres on Hospital Acquired Bacterial and Viral Pathogenscitations
- 2019Co-Culture of Keratinocyte-Staphylococcus aureus on Cu-Ag-Zn/CuO and Cu-Ag-W Nanoparticle Loaded Bacterial Cellulose:PMMA Bandagescitations
- 2019Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skinscitations
- 2019A scale-up of energy-cycle analysis on processing non-woven flax/PLA tape and triaxial glass fibre fabric for composites
- 2019A scale-up of energy-cycle analysis on processing non-woven flax/PLA tape and triaxial glass fibre fabric for compositescitations
- 2019Synergistic Antibacterial Effects of Metallic Nanoparticle Combinationscitations
- 2018Co-Culture of Keratinocyte-Staphylococcus aureus on Cu-Ag-Zn/CuO and Cu-Ag-W Nanoparticle Loaded Bacterial Cellulose:PMMA Bandagescitations
- 2017Characterisation of chemical composition and structural features of novel antimicrobial nanoparticlescitations
- 2012Mechanical properties of glass silicate based composites : effects of varying fibre volume fractions
- 2012Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applicationscitations
- 2012Mechanical properties of glass silicate based compositescitations
- 2010Hemp fibre as alternative to glass fibre in sheet moulding compound. Part 1 : influence of fibre content and surface treatment on mechanical properties
- 2008Determination of the complex permittivity of textiles and leather in the 14-40 mm wave band using a free-wave transmittance only method
- 2007Mechanical properties of carbon-fibre reinforced silicate matrix compositescitations
- 2004Low cost ceramic moulding compositescitations
Places of action
Organizations | Location | People |
---|
document
Co-Culture of Keratinocyte-Staphylococcus aureus on Cu-Ag-Zn/CuO and Cu-Ag-W Nanoparticle Loaded Bacterial Cellulose:PMMA Bandages
Abstract
© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ; Pressurized gyration and its sister processes are novel methods to produce polymeric fibers. Potential applications for such fibers include wound dressings, tissue engineering scaffolds, and filters. This study reports on a pressurized gyration technique that employs pressured N2 gas to prepare biocompatible wound dressing bandages from bacterial cellulose and poly (methylmethacrylate) polymer blended with alloyed antimicrobial nanoparti-cles. Resulting bandages are manufactured with high product yield and char-acterized for their chemical, physical, and mechanical properties. Increased density in solutions with additional antimicrobial nanoparticles results in increased fiber diameters. Also, addition of antimicrobial nanoparticles enhances ultimate tensile strength and Young’s modulus of the bandages. Typical molecular bonding in the bandages is confirmed by Fourier-transform infrared spectroscopy, with peaks that have higher intensity and narrowing points being caused by additional antimicrobial nanoparticles. More so, the cellular response to the bandages and the accompanying antimicrobial activity are studied in detail by in vitro co-culture of Staphylococcus aureusand keratinocytes. Antimicrobial nanoparticle-loaded bandage samples show increased cell viability and bacteria inhibition during co-culture and are found to have a promising future as epidermal wound dressing materials. ; Peer reviewed