People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spörk, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2019Optimisation of the interfacial bonding in polypropylene filled with different types of glass spheres produced by extrusion-based additive manufacturing
- 2019Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturingcitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2018Adhesion of standard filament materials to different build platforms in material extrusion additive manufacturing
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 20173D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts
- 2017Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturingcitations
- 2017Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabricationcitations
- 2016Bonding Forces in Fused Filament Fabrication
- 2016Haftungsvorhersage und Haftungsverbesserung im Fused Filament Fabrication (FFF) Prozess
- 2016Special Materials and Technologies for Fused Filament Fabrication
Places of action
Organizations | Location | People |
---|
article
Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturing
Abstract
A challenge in extrusion‐based additive manufacturing of polypropylene (PP) filled with spherical particles is the combination of decent processability, excellent warpage control, and the retention of the tensile strength of neat PP. This study addresses this issue by adopting two approaches. Firstly, different size fractions of borosilicate glass spheres incorporated into PP are compared. Secondly, the temperature of the printing chamber (TCh) is varied. The effects of these features on the thermal, crystalline, morphological, tensile, impact, and warpage properties of 3D‐printed parts are examined. Smaller glass spheres (<12 µm) are found to be superior to larger fractions in all investigated aspects. Notably, the corresponding composites show higher tensile strengths than neat PP. An increase in TCh results in a more homogeneous temperature distribution within the printing chamber and promotes annealing during printing. Consequently, the dimensional accuracy of printed parts is improved. Additionally, β‐crystals and larger spherulites are formed at a higher TCh.