Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Behzad, Ali Reza

  • Google
  • 2
  • 4
  • 60

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Sub-6 nm Thin Cross-Linked Dopamine Films with High Pressure Stability for Organic Solvent Nanofiltration31citations
  • 2016Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes29citations

Places of action

Chart of shared publication
Perez Manriquez, Liliana
1 / 1 shared
Moreno, Nicolas
1 / 2 shared
Tayouo Djinsu, Russell
1 / 2 shared
Sougrat, Rachid
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Perez Manriquez, Liliana
  • Moreno, Nicolas
  • Tayouo Djinsu, Russell
  • Sougrat, Rachid
OrganizationsLocationPeople

article

Sub-6 nm Thin Cross-Linked Dopamine Films with High Pressure Stability for Organic Solvent Nanofiltration

  • Behzad, Ali Reza
  • Perez Manriquez, Liliana
Abstract

Interfacial polymerization of dopamine and terephtaloyl chloride is performed on a porous crosslinked polyacrylonitrile support membrane. The resulting polymer layer has a smooth surface and is ultrathin (about 5 nm). The chemical nature of the interfacially polymerized layer is characterized by Fourier transform infrared spectroscopy and by X-ray photoelectron spectroscopy. The thin-film composite membrane is stable in aggressive solvents like dimethylformamide (DMF) and the membrane shows high solvent permeances combined with a molecular weight cut-off below 800 g mol-1. The remarkable stability in DMF, the ease of preparation as well as the extremely thin and smooth selective layer make this new type of bioinspired membrane attractive for solvent resistant nanofiltration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Topics
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • x-ray photoelectron spectroscopy
  • composite
  • molecular weight
  • Fourier transform infrared spectroscopy