Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hvilsted, S.

  • Google
  • 16
  • 49
  • 420

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2018Visualization of the distribution of surface-active block copolymers in PDMS-based coatings12citations
  • 2016Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS50citations
  • 2015Preparing mono-dispersed liquid core PDMS microcapsules from thiol-ene-epoxy-tailored flow-focusing microfluidic devices27citations
  • 2015Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization1citations
  • 2015Investigation Into Accessible Surface Vinyl Concentrations of Nonstoichiometric PDMS Microspheres from Hydrosilylation Reactions and Their Further Crosslinking Reactions4citations
  • 2014Encapsulated <scp>PDMS</scp> Microspheres with Reactive Handles20citations
  • 2014Preparation and Characterization of Silicone Liquid Core/Polymer Shell Microcapsules via Internal Phase Separation32citations
  • 2014PEG-Bis Phosphonic Acid Based Ionic Supramolecular Structures1citations
  • 2014Control of PDMS crosslinking by encapsulating a hydride crosslinker in a PMMA microcapsule8citations
  • 2014Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control63citations
  • 2014Visualisation and characterisation of heterogeneous bimodal PDMS networks47citations
  • 2012Properties and semicrystalline structure evolution of polypropylene/montmorillonite nanocomposites under mechanical load30citations
  • 2007Synthesis, characterization and photoinduction of optical anisotropy in liquid crystalline diblock azo-copolymers62citations
  • 2006Controlling Interface Adhesion and Fracture Properties in Composite Materials by Plasma Polymerisationcitations
  • 2006Controlling Interface Adhesion and Fracture Properties in Composite Materials by Plasma Polymerisationcitations
  • 2002Photoorientation of a liquid crystalline polyester with azobenzene side groups. 1. Effects of irradiation with linearly polarized blue light63citations

Places of action

Chart of shared publication
Olsen, S. M.
1 / 1 shared
Latipov, R.
1 / 1 shared
Noguer, A. Camós
1 / 1 shared
Madsen, F. B.
3 / 5 shared
Daugaard, A. E.
4 / 9 shared
Kiil, S.
1 / 1 shared
Skov, A. L.
1 / 2 shared
Mazurek, P.
2 / 3 shared
Skolimowski, M.
1 / 1 shared
Skov, Anne Ladegaard
9 / 298 shared
Hansen, J. H.
5 / 5 shared
Ma, B. G.
5 / 5 shared
Baoguang, Ma
1 / 1 shared
González, Lidia
1 / 1 shared
Li, L.
2 / 90 shared
Hansen, Jens Henrik
1 / 3 shared
Li, Li
1 / 24 shared
Hvilsted, Søren
1 / 82 shared
Gonzalez, L.
3 / 5 shared
Kostrzewska, M.
1 / 1 shared
Jensen, R. E.
1 / 1 shared
Javakhishvili, I.
1 / 2 shared
Fleury, C.
1 / 1 shared
Potarniche, C.-G.
1 / 1 shared
Drozdov, A.
1 / 3 shared
Botta, S.
1 / 3 shared
Christiansen, J.
1 / 1 shared
Zeinolebadi, A.
1 / 2 shared
Stribeck, N.
1 / 7 shared
Ermini, V.
1 / 1 shared
Jankova, K.
2 / 2 shared
Klitkou, R.
1 / 1 shared
Ganjaee Sari, M.
1 / 1 shared
Sanchez, S.
1 / 3 shared
Oriol, L.
1 / 2 shared
Alcala, R.
1 / 1 shared
Forcén, P.
1 / 2 shared
Loos, J. Joachim
1 / 22 shared
Sørensen, Bent F.
2 / 51 shared
Drews, J.
2 / 2 shared
Fæster, Søren
1 / 34 shared
Kingshott, P.
2 / 10 shared
Goutianos, S.
2 / 20 shared
Fæster Nielsen, Søren
1 / 2 shared
Hoffmann, U.
1 / 2 shared
Siesler, H. W.
1 / 1 shared
Rutloh, M.
1 / 4 shared
Zebger, I.
1 / 2 shared
Stumpe, J.
1 / 18 shared
Chart of publication period
2018
2016
2015
2014
2012
2007
2006
2002

Co-Authors (by relevance)

  • Olsen, S. M.
  • Latipov, R.
  • Noguer, A. Camós
  • Madsen, F. B.
  • Daugaard, A. E.
  • Kiil, S.
  • Skov, A. L.
  • Mazurek, P.
  • Skolimowski, M.
  • Skov, Anne Ladegaard
  • Hansen, J. H.
  • Ma, B. G.
  • Baoguang, Ma
  • González, Lidia
  • Li, L.
  • Hansen, Jens Henrik
  • Li, Li
  • Hvilsted, Søren
  • Gonzalez, L.
  • Kostrzewska, M.
  • Jensen, R. E.
  • Javakhishvili, I.
  • Fleury, C.
  • Potarniche, C.-G.
  • Drozdov, A.
  • Botta, S.
  • Christiansen, J.
  • Zeinolebadi, A.
  • Stribeck, N.
  • Ermini, V.
  • Jankova, K.
  • Klitkou, R.
  • Ganjaee Sari, M.
  • Sanchez, S.
  • Oriol, L.
  • Alcala, R.
  • Forcén, P.
  • Loos, J. Joachim
  • Sørensen, Bent F.
  • Drews, J.
  • Fæster, Søren
  • Kingshott, P.
  • Goutianos, S.
  • Fæster Nielsen, Søren
  • Hoffmann, U.
  • Siesler, H. W.
  • Rutloh, M.
  • Zebger, I.
  • Stumpe, J.
OrganizationsLocationPeople

article

Encapsulated <scp>PDMS</scp> Microspheres with Reactive Handles

  • Baoguang, Ma
  • González, Lidia
  • Li, L.
  • Hansen, Jens Henrik
  • Hansen, J. H.
  • Skov, Anne Ladegaard
  • Li, Li
  • Hvilsted, S.
  • Ma, B. G.
  • Hvilsted, Søren
  • Gonzalez, L.
Abstract

<jats:sec><jats:label /><jats:p>Cured poly(dimethyl siloxane) microspheres are prepared by an emulsion polymerization reaction of silicone droplets in a continuous aqueous phase. The commonly used PDMS elastomer, Sylgard 184 from Dow Corning, is used as the dispersed phase. PDMS is polymerized and cross‐linked by reacting vinyl end‐terminated poly(dimethyl siloxane) oligomers with dimethylmethylhydrogen siloxane cross‐linkers via the hydrosilylation reaction using platinum catalyst and heat. Weight ratios of 10:1, 20:1, and 25:1 of the PDMS mixtures are used and emulsified in water using two water‐soluble surfactants as stabilizers (sodium dodecyl sulphate and polyvinylalcohol). The temperature is subsequently increased to accelerate the rate of cross‐linking and prevent the prepolymer droplets from coalescing. The particle size distribution of cured PDMS microspheres is determined by Mastersizer (laser diffraction). Finally, cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated cured PDMS microspheres are characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy in attenuated‐total‐reflection mode, optical microscopy, and thermogravimetric analysis. Curing profiles of PDMS elastomer with different ratios between the silicone elastomer base and the silicone elastomer curing agent are obtained. The reactivity of cured PDMS microspheres and PMMA coated cured PDMS microspheres are measured by rheology to evaluate the efficiency of the PMMA coating.<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/mame201300319-gra-0001.png" xlink:title="mame201300319-gra-0001" /></jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • morphology
  • phase
  • experiment
  • Platinum
  • reactive
  • Sodium
  • thermogravimetry
  • differential scanning calorimetry
  • optical microscopy
  • size-exclusion chromatography
  • Fourier transform infrared spectroscopy
  • surfactant
  • curing
  • elastomer
  • solvent evaporation