Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sincari, Vladimir

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023One‐Pot/Simultaneous Synthesis of PHPMA‐<i>G</i>‐PLA Copolymers via Metal‐Free Rop/Raft Polymerization and their Self‐Assembly from Micelles to Thermoresponsive Vesicles5citations

Places of action

Chart of shared publication
Pavlova, Ewa
1 / 8 shared
Lobaz, Volodymyr
1 / 1 shared
Hrubý, Martin
1 / 1 shared
Petrova, Svetlana Lukáš
1 / 1 shared
Kočková, Olga
1 / 2 shared
Konefał, Rafał
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Pavlova, Ewa
  • Lobaz, Volodymyr
  • Hrubý, Martin
  • Petrova, Svetlana Lukáš
  • Kočková, Olga
  • Konefał, Rafał
OrganizationsLocationPeople

article

One‐Pot/Simultaneous Synthesis of PHPMA‐<i>G</i>‐PLA Copolymers via Metal‐Free Rop/Raft Polymerization and their Self‐Assembly from Micelles to Thermoresponsive Vesicles

  • Pavlova, Ewa
  • Sincari, Vladimir
  • Lobaz, Volodymyr
  • Hrubý, Martin
  • Petrova, Svetlana Lukáš
  • Kočková, Olga
  • Konefał, Rafał
Abstract

<jats:title>Abstract</jats:title><jats:p>The present article reports a simple and straightforward approach to access thermoresponsive graft copolymers based on lactide (LA) and a methacrylic monomer, 2‐hydroxypropyl methacrylate (HPMA), using a synthesized carboxy‐functionalized trithiocarbonate‐based chain transfer agent. One protocol involves a metal‐free simultaneous synthesis through a combination of reversible addition‐fragmentation chain transfer polymerization and organic acid‐catalyzed ring‐opening polymerization, which follows first‐order kinetics. The resulting copolymers with a controlled structure exhibit remarkably narrow molecular weight distributions (<jats:italic>Ð</jats:italic> &lt; 1.10). Within this framework, the self‐assembly of PHPMA‐<jats:italic>g</jats:italic>‐PLA graft copolymers (GCs) into nanoparticles (NPs) is demonstrated at concentrations of 0.2 and 0.5 wt.%, respectively. The displacement method, based on the rapid injection of the organic solvent (acetone) into an aqueous medium under vigorous stirring, produces spherical NPs such as micelles, vesicles, or non‐spherical “lumpy rods”. The presence of a pseudo‐thermoresponsive segment (PHPMA) in GCs facilitates stimulus‐responsive self‐assembly behavior. Well‐defined spherical NPs—primarily vesicles of substantial size—develop upon heating above the glass transition temperature (<jats:italic>T</jats:italic><jats:sub>g</jats:sub> ≈35–36 °C) of the GCs in an acetone–water (80/20 wt.%) mixture. Last, specific interactions between the obtained PHPMA‐<jats:italic>g</jats:italic>‐PLA nano‐objects and blood proteins in human plasma are studied using isothermal calorimetry.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • glass
  • glass
  • glass transition temperature
  • molecular weight
  • copolymer
  • gas chromatography
  • isothermal calorimetry