Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tharangattu Narayanan, Narayanan

  • Google
  • 4
  • 33
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Magnetic membranes based on PVA-SPION for hyperthermia and dielectric applicationscitations
  • 2023Large enhancement of thermal conductivity of aluminum-reduced graphene oxide composites prepared by a single-step method3citations
  • 2019Structural determination of Enzyme-Graphene Nanocomposite Sensor Materialcitations
  • 2019Anisotropic Mechanical Responses of Poly(Ethylene Oxide)‐Based Lithium Ions Containing Solid Polymer Electrolytes9citations

Places of action

Chart of shared publication
Joseph, Cyriac
1 / 1 shared
Biju, Anjitha
1 / 1 shared
Iyer, Anantharaman M. R.
1 / 1 shared
Varma, Hari Krishna
1 / 1 shared
Al-Omari, Imaddin A.
1 / 1 shared
Fernandez, Francis Boniface
1 / 1 shared
Mitra, Arijit
1 / 2 shared
Pradhan, Sunil Kumar
1 / 3 shared
Sahoo, Krishna Rani
1 / 5 shared
Kar, Subrat
1 / 2 shared
Satpathy, Bijoy Kumar
1 / 1 shared
Sahoo, Mihir Ranjan
1 / 2 shared
Polai, Balaram
1 / 1 shared
Samal, Aiswarya
1 / 1 shared
Ajayan, Pulickel M.
1 / 29 shared
Satyam, Parlapalli V.
1 / 1 shared
Nayak, Saroj K.
1 / 1 shared
Manickam, Gurusaran
1 / 1 shared
Aran, Kiana
1 / 2 shared
Ajayan, Pulickel
1 / 9 shared
González-Siso, María-Isabel
1 / 1 shared
Escuder-Rodríguez, Juan-José
1 / 1 shared
Álvarez-Cao, María-Efigenia
1 / 1 shared
Rai, D. K.
1 / 2 shared
Li, Pingzuo
1 / 2 shared
Ma, Lulu
1 / 2 shared
Liepmann, Dorian
1 / 2 shared
Sekar, Vijay
1 / 11 shared
Renugopalakrishnan, Venkatesan
1 / 2 shared
Cerdán, María Esperanza
1 / 1 shared
Daga, Piyush
1 / 1 shared
Yeddala, Munaiah
1 / 1 shared
Patra, Sudeshna
1 / 1 shared
Chart of publication period
2024
2023
2019

Co-Authors (by relevance)

  • Joseph, Cyriac
  • Biju, Anjitha
  • Iyer, Anantharaman M. R.
  • Varma, Hari Krishna
  • Al-Omari, Imaddin A.
  • Fernandez, Francis Boniface
  • Mitra, Arijit
  • Pradhan, Sunil Kumar
  • Sahoo, Krishna Rani
  • Kar, Subrat
  • Satpathy, Bijoy Kumar
  • Sahoo, Mihir Ranjan
  • Polai, Balaram
  • Samal, Aiswarya
  • Ajayan, Pulickel M.
  • Satyam, Parlapalli V.
  • Nayak, Saroj K.
  • Manickam, Gurusaran
  • Aran, Kiana
  • Ajayan, Pulickel
  • González-Siso, María-Isabel
  • Escuder-Rodríguez, Juan-José
  • Álvarez-Cao, María-Efigenia
  • Rai, D. K.
  • Li, Pingzuo
  • Ma, Lulu
  • Liepmann, Dorian
  • Sekar, Vijay
  • Renugopalakrishnan, Venkatesan
  • Cerdán, María Esperanza
  • Daga, Piyush
  • Yeddala, Munaiah
  • Patra, Sudeshna
OrganizationsLocationPeople

article

Anisotropic Mechanical Responses of Poly(Ethylene Oxide)‐Based Lithium Ions Containing Solid Polymer Electrolytes

  • Daga, Piyush
  • Tharangattu Narayanan, Narayanan
  • Yeddala, Munaiah
  • Patra, Sudeshna
Abstract

<jats:title>Abstract</jats:title><jats:p>Development of mechanically deformable solid state devices is receiving tremendous attention, and high ionic conductivity solid polymer electrolytes (SPEs) are highly sought after for their development. The process history‐induced polymer alignment anisotropy can lead to anisotropic conductivity to the SPEs. Here, a Li ion SPE membrane developed using poly(ethylene oxide) (PEO) and LiClO<jats:sub>4</jats:sub> is demonstrated for its microstructure variations while applying external stress and the corresponding variations in the ionic conductivity are also calculated. The microstructural evolution shows that larger strain values induce large dislocations in the crystallites of PEO leading to the formation of larger amorphous regions which soften the matrix. The anisotropic mechanical responses are observed while applying cyclic strain to thicker SPEs, where the compressive measurements show softening of the matrix while tensile measurements harden the matrix. The ionic conductivities of the softened matrix are found to be enhanced while those of toughened matrix are found to be decreased. This detailed mechanical analysis along with the in situ ionic conductivity studies of PEO‐based Li ion SPE show that along with the thermal history of the polymers, process history and the anisotropic mechanical responses of the polymers also need to be considered while developing SPEs for flexible devices.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • amorphous
  • anisotropic
  • dislocation
  • Lithium