Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Narayan, Ramani

  • Google
  • 2
  • 3
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2004Synthesis of melt-stable and semi-crystalline poly(1,4-dioxan-2-one) by ring-opening (co)polymerisation of 1,4-dioxan-2-one with different lactones19citations
  • 2004Diblock copolymers based on 1,4-dioxan-2-one and ε-caprolactone10citations

Places of action

Chart of shared publication
Raquez, Jean Marie
2 / 47 shared
Degée, Philippe
2 / 39 shared
Dubois, Philippe
2 / 24 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Raquez, Jean Marie
  • Degée, Philippe
  • Dubois, Philippe
OrganizationsLocationPeople

article

Diblock copolymers based on 1,4-dioxan-2-one and ε-caprolactone

  • Narayan, Ramani
  • Raquez, Jean Marie
  • Degée, Philippe
  • Dubois, Philippe
Abstract

<p>Various poly(ε-caprolactone-block-1,4-dioxan-2-one) (P(CL-block-PDX)) block copolymers were prepared according to the living/controlled ring-opening polymerization (ROP) of 1,4-dioxan-2-one (PDX) as initiated by in situ generated ω-aluminium alkoxides poly (ε-caprolactone) (PCL) chains in toluene at 25°C.<sup>[1]</sup> <sup>1</sup>H NMR, PCS and TEM measurements have attested for the formation of colloids attributed to a growing PPDX core surrounded by a solvating PCL shell during the polymerization of PDX promoted by ω-A1 alkoxide PCL chains in toluene. The thermal behavior of the P(CL-block-PDX) copolymers was studied by DSC showing two distinct melting temperatures (as well as two glass transition temperatures) similar to those of the respective homopolyesters. Finally, the thermal degradation of the P(CL-block-PDX) block copolymers was investigated by TGA simultaneously coupled to a FT-IR spectrometer and a mass spectrometer for evolved gas analysis (EGA). The degradation occurred in two consecutive steps involving a first unzipping depolymerization of the PPDX blocks followed by the degradation of the PCL blocks via both ester pyrolysis and unzipping reactions.</p>

Topics
  • pyrolysis
  • aluminium
  • glass
  • glass
  • transmission electron microscopy
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • copolymer
  • Nuclear Magnetic Resonance spectroscopy
  • block copolymer
  • ester
  • melting temperature