People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Radojković, Bojana M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Cerium lactate as green corrosion inhibitor of AA2024 alloycitations
- 2023Corrosion of metal parts in the power plantcitations
- 2022Синергетско дејство неодијума и цистеина на легури АА7075 у раствору NaCl ; Synergistic effect of Neodymium and Cysteine as inhibitors for AA7075 alloy in NaCl solution
- 2022Inhibitory effect of cysteine and lanthanides on AA7075‐T6 in neutral NaCl solutioncitations
- 2022Cysteine and cerium as green corrosion inhibitors for AA7049: Mixture vs. complexationcitations
- 2022Green Corrosion Inhibitors with Cysteine and Cerium-Cysteine Complex on 7000 series Aluminum Alloy ; Zeleni inhibitori korozije sa cisteinom i kompleksom cerijum-cisteina na 7000 seriji aluminijumske legure
Places of action
Organizations | Location | People |
---|
article
Corrosion of metal parts in the power plant
Abstract
<jats:title>Abstract</jats:title><jats:p>The AISI 304 (X5CrNi19‐10) stainless steel is widely used for the production of various metal parts in power plants. A procedure for testing the influence of the dust from a power plant on resistance to general and pitting corrosion of the AISI 304 stainless steel is developed and performed. The quantitative (XRD method) and qualitative (Fourier–transform infrared spectroscopy [FTIR] method) composition of the dust present in the power plant is determined. Applying the Mott–Schottky method, the properties of the passive layer are analyzed, while a degree of chromium depletion of the grain boundary is determined by the electrochemical potentiokinetic reactivation method with double loop method. Values of polarization resistance (linear polarization resistance and electrochemical impedance spectroscopy methods) and the corrosion current density (polarization measurements) indicate that the stainless steel has a higher resistance to general corrosion in the dust solutions than in the etalon solution. Also, based on the measured value of the pitting potential (<jats:italic>E</jats:italic><jats:sub>pit</jats:sub>) and the difference between the values of the pitting potential and the corrosion potential (<jats:italic>E</jats:italic><jats:sub>pit</jats:sub> – <jats:italic>E</jats:italic><jats:sub>corr</jats:sub>), it can be seen that stainless steel has a higher resistance to localized types of corrosion, such as pitting corrosion, in dust solutions than in the etalon solution.</jats:p>