People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raupach, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Application of electrochemical methods for studying steel corrosion in alkali-activated materialscitations
- 2023Applicability of the formation factor for different alternative binder types investigated on mortarscitations
- 2023Application of electrochemical methods for studying steel corrosion in alkali‐activated materialscitations
- 2023Eignung des RCM‐Versuchs zur Bestimmung des Chloridmigrationskoeffizienten in Mörteln aus alternativen Bindemittelncitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2023Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopycitations
- 2022Investigations on the Experimental Setup for Testing the Centric Tensile Strength According to ASTM C307 of Mineral-based Materialscitations
- 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concretecitations
- 2022Influence of Selected Impregnation Materials on the Tensile Strength for Carbon Textile Reinforced Concrete at Elevated Temperaturescitations
- 2022Hydration and Carbonation of Alternative Binderscitations
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion:a critical review by RILEM TC 262-SCIcitations
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosion: a critical review by RILEM TC 262-SCIcitations
- 2022Methods for characterising the steel–concrete interface to enhance understanding of reinforcement corrosioncitations
- 2011Brandverhalten textilbewehrter Bauteile
- 2008Study of the bond in textile reinforced concrete: influence of matrix and interface modification
- 2007Durability aspects of AR-glass-reinforcement in textile reinforced concrete, Part 2: Modelling and exposure to outdoor weatheringcitations
- 2005Durability modelling of glass fibre reinforcement in cementitious environmentcitations
- 2003Measurement of the Durability of Glass Fibre Reinforced Concrete and Influence of Matrix Alkalinitycitations
Places of action
Organizations | Location | People |
---|
article
Application of electrochemical methods for studying steel corrosion in alkali‐activated materials
Abstract
<jats:title>Abstract</jats:title><jats:p>Alkali‐activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by <jats:italic>EFC WP11‐Task Force ‘Corrosion of steel in alkali‐activated materials’</jats:italic> demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag‐based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field.</jats:p>