Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Achenbach, Rebecca

  • Google
  • 7
  • 25
  • 50

RWTH Aachen University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Corrosion protection of steel reinforcement by alternative binder typescitations
  • 2023Application of electrochemical methods for studying steel corrosion in alkali-activated materials12citations
  • 2023Applicability of the formation factor for different alternative binder types investigated on mortars5citations
  • 2023Application of electrochemical methods for studying steel corrosion in alkali‐activated materials12citations
  • 2023Eignung des RCM‐Versuchs zur Bestimmung des Chloridmigrationskoeffizienten in Mörteln aus alternativen Bindemitteln3citations
  • 2023Comparative investigation on the influence of metakaolin, metaillite and steel slag as SCMs in mortar on the corrosion behavior of embedded steelcitations
  • 2022Hydration and Carbonation of Alternative Binders18citations

Places of action

Chart of shared publication
Bernal, Susan A.
2 / 42 shared
Criado, Maria
1 / 7 shared
Bastidas, David M.
1 / 10 shared
Mundra, Shishir
2 / 12 shared
Grevedierfeld, Stefanie Von
1 / 1 shared
Gluth, Gregor J. G.
1 / 17 shared
Samson, Gabriel
2 / 11 shared
Provis, John L.
2 / 52 shared
Masi, Giulia
2 / 5 shared
Gartner, Nina
2 / 6 shared
Legat, Andraž
2 / 32 shared
Cyr, Martin
2 / 41 shared
Ali, Nikoonasab
1 / 1 shared
Bignozzi, Maria Chiara
1 / 8 shared
Raupach, Michael
5 / 18 shared
Gluth, Gregor
1 / 44 shared
Sanz, María Criado
1 / 1 shared
Nikoonasab, Ali
1 / 3 shared
Von Greve-Dierfeld, Stefanie
1 / 10 shared
Bignozzi, Maria
1 / 4 shared
Kraft, Bettina I. E.
1 / 1 shared
Ludwig, Horstmichael
1 / 2 shared
Raupach, M.
1 / 8 shared
Kraft, Bettina
1 / 1 shared
Ludwig, Horst-Michael
1 / 5 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Bernal, Susan A.
  • Criado, Maria
  • Bastidas, David M.
  • Mundra, Shishir
  • Grevedierfeld, Stefanie Von
  • Gluth, Gregor J. G.
  • Samson, Gabriel
  • Provis, John L.
  • Masi, Giulia
  • Gartner, Nina
  • Legat, Andraž
  • Cyr, Martin
  • Ali, Nikoonasab
  • Bignozzi, Maria Chiara
  • Raupach, Michael
  • Gluth, Gregor
  • Sanz, María Criado
  • Nikoonasab, Ali
  • Von Greve-Dierfeld, Stefanie
  • Bignozzi, Maria
  • Kraft, Bettina I. E.
  • Ludwig, Horstmichael
  • Raupach, M.
  • Kraft, Bettina
  • Ludwig, Horst-Michael
OrganizationsLocationPeople

article

Application of electrochemical methods for studying steel corrosion in alkali‐activated materials

  • Bernal, Susan A.
  • Mundra, Shishir
  • Gluth, Gregor
  • Sanz, María Criado
  • Nikoonasab, Ali
  • Samson, Gabriel
  • Provis, John L.
  • Masi, Giulia
  • Achenbach, Rebecca
  • Gartner, Nina
  • Legat, Andraž
  • Von Greve-Dierfeld, Stefanie
  • Bignozzi, Maria
  • Cyr, Martin
  • Raupach, Michael
Abstract

<jats:title>Abstract</jats:title><jats:p>Alkali‐activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by <jats:italic>EFC WP11‐Task Force ‘Corrosion of steel in alkali‐activated materials’</jats:italic> demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag‐based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • corrosion
  • laser emission spectroscopy
  • steel
  • cement
  • susceptibility