People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chlewicka, Monika
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Microstructure and corrosion resistance characteristics of Ti–AlN composite produced by selective laser meltingcitations
- 2022Evolution of microstructure dependent corrosion properties of ultrafine AZ31 under conditions of extrusion with a forward backward oscillating diecitations
- 2022A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sinteringcitations
- 2019The influence of volume fraction of amorphous phase on corrosion resistance of Mg67Zn29Ca4alloycitations
- 2019The impact of different volume fractions of crystalline structures on the electrochemical behaviour of Mg67Zn29Ca4alloys for biomedical applicationscitations
- 2018Effect of structure on corrosion resistance of Mg-Zn-Ca alloy
- 2017Comparison of corrosion resistance of glass fiber reinforced composites and steels applicable for extraction pipes
Places of action
Organizations | Location | People |
---|
article
Microstructure and corrosion resistance characteristics of Ti–AlN composite produced by selective laser melting
Abstract
The aim of this study is to produce Ti–AlN via selective laser melting. The results show that the microstructure of the produced alloy is not uniform. The X‐ray diffraction measurements show that the Ti–AlN composite is composed of a Ti matrix, AlN compounds, as well as (TiN)0.88, Al6 Ti19, and Al1.1Ti0.9 intermetallics. The as‐printed Ti–AlN is also composed of dendrites of two typical titanium nitrides (TiN and Ti2N) and titanium aluminum nitride (Ti2AlN). Subsequent quenching and annealing slightly change the phase composition of the alloy and is the main reason for their different corrosion behaviors in acidic and chloride‐containing solutions. The results of this study show that the formation of Al‐rich ternary phases improved the corrosion resistance of the three‐dimensional‐printed Ti–AlN after quenching.