People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xu, Yi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Antioxidant flavonoid-loaded nano-bioactive glass bone paste: in vitro apatite formation and flow behavior
- 2021Pitting of carbon steel in the synthetic concrete pore solutioncitations
- 2018Green Pavement Overlays. Composite Beams on Elastic Foundation and their Numerical Representation
- 2016Optimum design for sustainable, 'green' concrete overlays. Part III
- 2012The Effects of Phosphorus at the SiO2/4H-SiC Interfacecitations
Places of action
Organizations | Location | People |
---|
article
Pitting of carbon steel in the synthetic concrete pore solution
Abstract
<jats:title>Abstract</jats:title><jats:p>Pitting corrosion is a possible mode of failure of the carbon steel overpack of the Belgian supercontainer concept for the isolation of high‐level nuclear waste (HLNW). However, no firm experimental data are currently available to estimate the probability of failure over the extended storage time (100,000 years). Extensive work shows that passivity breakdown results from the condensation of cation vacancies (CVs) at the metal/barrier layer (m/bl) interface, in response to the absorption of Cl<jats:sup>−</jats:sup> into oxygen vacancies at the surface of the barrier oxide layer. The CVs migrate across the bl to the m/bl interface where they condense, leading to the separation of the bl from the metal. The resulting blister prevents the growth of bl into the metal and dissolution results in blister rupture, marking a passivity breakdown event. Stabilization via differential aeration produces a potentially damaging, stable pit. We review our work on passivity breakdown and the nucleation of pits on P355 QL2 carbon steel in high‐pH aqueous media typical of concrete pore solution, with emphasis on the mechanistic aspects. We conclude that failure of the carbon steel overpack containing the HLNW over a storage horizon of 100,000 years is improbable.</jats:p>