People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mendibide, Christophe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effect of degraded environmental conditions on the service behavior of a X65 pipeline steel not designed for hydrogen transportcitations
- 2021Corrosion and hydrogen permeation in H2S environments with O2 contamination – Part 3: the impact of acetate-buffered test solution chemistrycitations
- 2021Corrosion behavior of aluminum alloy 5754 in cement‐based matrix‐simulating nuclear waste disposal conditionscitations
- 2021Stress corrosion cracking susceptibility of P285NH and API 5L X65 steel grades in the high‐level radioactive waste repository cell conceptcitations
- 2020Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutionscitations
- 2020Impact of oxygen contamination on the electrochemical impedance spectroscopy of iron corrosion in H2S solutionscitations
- 2019Corrosion and hydrogen permeation of low alloy steel in H2S-containing environments : the effect of test buffer solution chemistry
- 2019Corrosion and hydrogen permeation of low alloy steel in H2S-containing environments : the effect of test buffer solution chemistry
- 2019EIS study of iron and steel corrosion in aqueous solutions at various concentrations of dissolved H2S : impact of oxygen contamination.
- 2019EIS study of iron and steel corrosion in aqueous solutions at various concentrations of dissolved H2S : impact of oxygen contamination.
- 2019Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, Part 2: Impact of H2S Partial Pressurecitations
- 2019Corrosion and Hydrogen Permeation in H2S Environments with O2 Contamination, Part 2: Impact of H2S Partial Pressurecitations
- 2018Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutionscitations
- 2018Electrochemical impedance spectroscopy of iron corrosion in H 2 S solutionscitations
- 2018Corrosion of Pure iron and Hydrogen Permeation in the Presence of H 2 S with O 2 contamination
- 2018Corrosion of Pure iron and Hydrogen Permeation in the Presence of H 2 S with O 2 contamination
- 2018Corrosion of pure iron and hydrogen permeation in the presence of H2S with O2 contamination
- 2018Electrochemical study of oxygen impact on corrosion and hydrogen permeation of Armco iron in the presence of H 2 S
- 2018Electrochemical impedance spectroscopy of iron corrosion in H2S solutions
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2017Impact of Oxygen on Corrosion and Hydrogen Permeation of Pure iron in the Presence of H2S
- 2008Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistancecitations
Places of action
Organizations | Location | People |
---|
article
Corrosion behavior of aluminum alloy 5754 in cement‐based matrix‐simulating nuclear waste disposal conditions
Abstract
<jats:title>Abstract</jats:title><jats:p>Depending on the lifetime and level of radioactivity of radioactive wastes, different disposal facilities are considered. Though low‐ and intermediate‐level short‐lived waste can be disposed in surface disposal facilities, deep geological disposal is considered for high‐ and intermediate‐level long‐lived waste. In France and Belgium, long‐term disposal is studied in clay host rock media. For aluminum, the disposal concept is based on encapsulation of the waste in a cement‐based matrix. It is also well‐known that aluminum is prone to severe corrosion in sufficiently alkaline environments leading to possible hydrogen production. To ensure the safety of the disposal facilities and the integrity of the cement capsules, the amount of aluminum that is disposed in each waste package must be specified and is limited to mitigate the level of hydrogen production by aluminum corrosion. In the present study, the corrosion resistance of an aluminum alloy (grade EN‐AW‐5754/H111) in two different cement matrices was studied in different configurations at room temperature. In each case, the evolution of hydrogen production was monitored to address the corrosion rate variation versus time.</jats:p>