People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zheludkevich, Mikhail
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni‐Coated Martensitic Steels by Advanced Computational Modelingcitations
- 2023Searching the chemical space for effective magnesium dissolution modulators: a deep learning approach using sparse features
- 2023Predicting corrosion inhibition efficiencies of small organic molecules using data-driven techniques
- 2022Chromate-Free Corrosion Protection Strategies for Magnesium Alloys—A Review: Part II—PEO and Anodizingcitations
- 2022The Role of Cu-Based Intermetallic on the Direct Growth of a ZnAl LDH Film on AA2024citations
- 2021The Influence of in‐situ Anatase Particle Addition on the Formation and Properties of Multi‐Functional Plasma Electrolytic Oxidation Coatings on AA2024 Aluminium Alloycitations
- 2021The Stability and Chloride Entrapping Capacity of ZnAl-NO2 LDH in High-Alkaline/Cementitious Environmentcitations
- 2021Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020A first-principles analysis of the charge transfer in magnesium corrosioncitations
- 2020ATR-FTIR in Kretschmann configuration integrated with electrochemical cell as in situ interfacial sensitive tool to study corrosion inhibitors for magnesium substrates
- 2020Magnetic Properties of La<sub>0.9</sub>A<sub>0.1</sub>MnO<sub>3</sub> (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2020Magnetic Properties of La0.9A0.1MnO3 (A: Li, Na, K) Nanopowders and Nanoceramicscitations
- 2019Data science based mg corrosion engineering
- 2019Effect of unequal levels of deformation and fragmentation on the electrochemical response of friction stir welded AA2024-T3 alloycitations
- 2019Enhanced predictive corrosion modeling with implicit corrosion productscitations
- 2017Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growthcitations
- 2017Direct Synthesis of Electrowettable Carbon Nanowall–Diamond Hybrid Materials from Sacrificial Ceramic Templates Using HFCVDcitations
Places of action
Organizations | Location | People |
---|
article
Enhanced predictive corrosion modeling with implicit corrosion products
Abstract
An advanced mathematical approach to describe the influence of corrosion products on the corrosion rate is presented here. The related model can be used as input equation for numerical predictive corrosion simulations or simply as an empirical model, to extrapolate experimental data of corrosion tests to longer times and to interpret the physical parameters behind. This semiempirical model assumes that a constant share of the dissolved metal precipitates on the surface and hinders the diffusion processes. Hence, the effective corrosion rate decreases exponentially with increasing dissolution. The explicit corrosion progress over time is derived by time integration on a newly developed, time dependent corrosion rate equation. The derived expression can be effortlessly implemented in existing for example finite element method, which is demonstrated for the uniform corrosion of a zinc surface. Furthermore, this approach is qualitatively compared with other empirical models for corrosion products and the validity is demonstrated by fitting of experimental data. A very good agreement between experiment and theory can be achieved for various materials and environments considering no change of the driving corrosion mechanism.