People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cole, Ivan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Inhibitory behaviour and adsorption stability of benzothiazole derivatives as corrosion inhibitors towards galvanised steelcitations
- 2023Use of sensing, digitisation, and virtual object analyses to refine quality performance and increase production rate in additive manufacturing
- 2023Inhibitory behaviour and adsorption stability of benzothiazole derivatives as corrosion inhibitors towards galvanised steelcitations
- 2023Progress and challenges in making an aerospace component with cold spray additive manufacturing
- 2023A design and optimisation framework for cold spray additive manufacturing of lightweight aerospace structural componentscitations
- 2023Microstructure and mechanical properties of heat-treated cold spray additively manufactured titanium metal matrix compositescitations
- 2023Electrochemical and Surface Characterisation of Carbon Steel Exposed to Mixed Ce and Iodide Electrolytes
- 2022In-situ monitoring of build height during powder-based laser metal depositioncitations
- 2022Predictions of in-situ melt pool geometric signatures via machine learning techniques for laser metal depositioncitations
- 2020Nondestructive quantitative characterisation of material phases in metal additive manufacturing using multi-energy synchrotron X-rays microtomographycitations
- 2018Detection of defects of additively manufactured metal parts via synchrotron X-ray microtomography
- 2016Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitorscitations
- 2016Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA)citations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part II: The influence of intermetallic compositions within heavily attacked sitescitations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part I: Average statistics of each intermetallic compositioncitations
- 2014Towards chromate-free corrosion inhibitors: structure property models for organic alternativescitations
- 2014Microstructure characterisation and reconstruction of intermetallic particlescitations
- 2013In-situ synthesis of functional silica nanoparticles for enhancement the corrosion resistance of TBCscitations
- 2013A corrosion map of Abu Dhabicitations
- 2012The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soilscitations
- 2012FIB/SEM study of AA2024 corrosion under a seawater drop. Part IIcitations
- 2011Managing risk of SCC of Fin Fan air cooled heat exchangers
- 2011FIB/SEM study of AA2024 corrosion under a seawater drop: Part Icitations
- 2010Combining green self-healing coatings for metal protectioncitations
- 2010Multilayered coatings: tuneable protection for metalscitations
Places of action
Organizations | Location | People |
---|
article
A corrosion map of Abu Dhabi
Abstract
This paper outlines how a corrosion map of Abu-Dhabi was developed. It presents inputs into the model being databases of RH, Rainfall, Salt Deposition and Time of wetness and explains how this inputs are combined to product the corrosion map of Abu Dhabi.It is found that although the corrosion rate generally falls with distance from the Arabian Gulf, corrosion rates in the hinterland of the central coast and in the Hajar Mountains are higher than would be expected from a simple dependence on distance from the coast. The higher corrosion rates around the central coast are associated with the extremely low rainfallwhile those in the Hajar Mountains may be associated with the transport of airborne salinity from the Gulf of Oman. In general, the corrosion rates in Abu Dhabi are much higher than observed at sites in Australia and South East Asia with similar levels of airborne salinity which isattributed to the much higher quantities of salt that are retained on metal surfaces in Abu Dhabi (relative to Australia) due to the fact that rain washing events, which are frequent and effective in Australia, are very infrequent in Abu Dhabi.