Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baker, Matthew B.

  • Google
  • 11
  • 51
  • 287

Maastricht University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024Introducing Dynamicity6citations
  • 2024Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement6citations
  • 2023Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis40citations
  • 2023Complementary Supramolecular Functionalization Enhances Antifouling Surfaces7citations
  • 2023Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applications4citations
  • 2022Tuning Hydrogels by Mixing Dynamic Cross-Linkers: Enabling Cell-Instructive Hydrogels and Advanced Bioinks60citations
  • 2022Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D17citations
  • 20224D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles28citations
  • 2021Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering38citations
  • 2021Biomimetic double network hydrogels: Combining dynamic and static crosslinks to enable biofabrication and control cell-matrix interactions32citations
  • 2019Self-assembly of electrospun nanofibers into gradient honeycomb structures49citations

Places of action

Chart of shared publication
Fernández-Pérez, Julia
2 / 2 shared
Grant, Rhiannon
1 / 2 shared
Giselbrecht, Stefan
2 / 14 shared
Feliciano, Antonio
3 / 3 shared
Dijkstra, Pieter J.
1 / 1 shared
Moroni, Lorenzo
9 / 43 shared
Bauer, Jurica
1 / 1 shared
Rademakers, Timo
1 / 3 shared
Morgan, Francis L. C.
3 / 3 shared
Beeren, Ivo A. O.
1 / 1 shared
Kessels, L.
1 / 1 shared
Agten, Stijn
1 / 1 shared
Wang, F. Y.
1 / 1 shared
Rivero, R.
1 / 1 shared
Fan, D. D.
1 / 1 shared
Wang, Rong
1 / 4 shared
Yao, Tianyu
2 / 2 shared
Wolfs, Tim
1 / 2 shared
Chen, H. L.
1 / 1 shared
Hackeng, Tilman
1 / 1 shared
Lapointe, Vanessa
1 / 5 shared
Bosman, Anton W.
1 / 3 shared
Van Blitterswijk, Clemens A.
2 / 21 shared
Soares, Eduardo
1 / 2 shared
Zengin, Aygul
1 / 3 shared
Habibovic, Pamela
1 / 31 shared
Van Rijt, Sabine Helena
1 / 4 shared
Teixeira, Filipa Castro
1 / 1 shared
Mota, Carlos
2 / 27 shared
Malheiro, Afonso
1 / 1 shared
Ruiter, Floor A. A.
1 / 1 shared
Wieringa, Paul
1 / 4 shared
Hafeez, Shahzad
2 / 3 shared
Matsumoto, Nicholas M.
1 / 1 shared
Van Blitterswijk, Clemens
1 / 4 shared
Feliciano, Antonio J.
1 / 1 shared
Passanha, Fiona R.
1 / 1 shared
Lapointe, Vanessa L. S.
1 / 2 shared
Lafleur, René P. M.
1 / 2 shared
Albertini, Franca
1 / 11 shared
Kuhnt, Tobias
1 / 1 shared
Arreguín, Mariana
1 / 1 shared
Ghahfarokhi, Milad Takhsha
1 / 1 shared
Nieto, Daniel
1 / 3 shared
Camareroespinosa, Sandra
1 / 1 shared
Cabassi, Riccardo
1 / 4 shared
Setayeshmehr, Mohsen
1 / 1 shared
Houben, S.
1 / 1 shared
Pitet, L. M.
1 / 1 shared
Aldana, Ana Agustina
1 / 2 shared
Samal, Pinak
1 / 3 shared
Chart of publication period
2024
2023
2022
2021
2019

Co-Authors (by relevance)

  • Fernández-Pérez, Julia
  • Grant, Rhiannon
  • Giselbrecht, Stefan
  • Feliciano, Antonio
  • Dijkstra, Pieter J.
  • Moroni, Lorenzo
  • Bauer, Jurica
  • Rademakers, Timo
  • Morgan, Francis L. C.
  • Beeren, Ivo A. O.
  • Kessels, L.
  • Agten, Stijn
  • Wang, F. Y.
  • Rivero, R.
  • Fan, D. D.
  • Wang, Rong
  • Yao, Tianyu
  • Wolfs, Tim
  • Chen, H. L.
  • Hackeng, Tilman
  • Lapointe, Vanessa
  • Bosman, Anton W.
  • Van Blitterswijk, Clemens A.
  • Soares, Eduardo
  • Zengin, Aygul
  • Habibovic, Pamela
  • Van Rijt, Sabine Helena
  • Teixeira, Filipa Castro
  • Mota, Carlos
  • Malheiro, Afonso
  • Ruiter, Floor A. A.
  • Wieringa, Paul
  • Hafeez, Shahzad
  • Matsumoto, Nicholas M.
  • Van Blitterswijk, Clemens
  • Feliciano, Antonio J.
  • Passanha, Fiona R.
  • Lapointe, Vanessa L. S.
  • Lafleur, René P. M.
  • Albertini, Franca
  • Kuhnt, Tobias
  • Arreguín, Mariana
  • Ghahfarokhi, Milad Takhsha
  • Nieto, Daniel
  • Camareroespinosa, Sandra
  • Cabassi, Riccardo
  • Setayeshmehr, Mohsen
  • Houben, S.
  • Pitet, L. M.
  • Aldana, Ana Agustina
  • Samal, Pinak
OrganizationsLocationPeople

article

Introducing Dynamicity

  • Fernández-Pérez, Julia
  • Grant, Rhiannon
  • Giselbrecht, Stefan
  • Baker, Matthew B.
  • Feliciano, Antonio
Abstract

<p>Developing biomaterials for corneal repair and regeneration is crucial for maintaining clear vision. The cornea, a specialized tissue, relies on corneal keratocytes, that respond to their mechanical environment. Altering stiffness affects keratocyte behavior, but static stiffness alone cannot capture the dynamic properties of in vivo tissue. This study proposes that the cornea exhibits time-dependent mechanical properties, similar to other tissues, and aims to replicate these properties in potential therapeutic matrices. First, the cornea's stress relaxation properties are investigated using nanoindentation, revealing 15% relaxation within 10 seconds. Hydrogel dynamicity is then modulated using a specially formulated alginate-PEG and alginate-norbornene mixture. The tuning of the hydrogel's dynamicity is achieved through a photoinitiated norbornene-norbornene dimerization reaction, resulting in relaxation times ranging from 30 seconds to 10 minutes. Human primary corneal keratocytes are cultured on these hydrogels, demonstrating reduced αSMA (alpha smooth muscle actin) expression and increased filopodia formation on slower relaxing hydrogels, resembling their native phenotype. This in vitro model can enable the optimization of stress relaxation for various cell types, including corneal keratocytes, to control tissue formation. Combining stress relaxation optimization with stiffness assessment provides a more accurate tool for studying cell behavior and reduces mechanical mismatch with native tissues in implanted constructs.</p>

Topics
  • impedance spectroscopy
  • nanoindentation
  • biomaterials