People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baker, Matthew B.
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Introducing Dynamicitycitations
- 2024Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacementcitations
- 2023Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesiscitations
- 2023Complementary Supramolecular Functionalization Enhances Antifouling Surfacescitations
- 2023Matrix metalloproteinase degradable, in situ photocrosslinked nanocomposite bioinks for bioprinting applicationscitations
- 2022Tuning Hydrogels by Mixing Dynamic Cross-Linkers: Enabling Cell-Instructive Hydrogels and Advanced Bioinkscitations
- 2022Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3Dcitations
- 20224D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticlescitations
- 2021Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineeringcitations
- 2021Biomimetic double network hydrogels: Combining dynamic and static crosslinks to enable biofabrication and control cell-matrix interactionscitations
- 2019Self-assembly of electrospun nanofibers into gradient honeycomb structurescitations
Places of action
Organizations | Location | People |
---|
article
Introducing Dynamicity
Abstract
<p>Developing biomaterials for corneal repair and regeneration is crucial for maintaining clear vision. The cornea, a specialized tissue, relies on corneal keratocytes, that respond to their mechanical environment. Altering stiffness affects keratocyte behavior, but static stiffness alone cannot capture the dynamic properties of in vivo tissue. This study proposes that the cornea exhibits time-dependent mechanical properties, similar to other tissues, and aims to replicate these properties in potential therapeutic matrices. First, the cornea's stress relaxation properties are investigated using nanoindentation, revealing 15% relaxation within 10 seconds. Hydrogel dynamicity is then modulated using a specially formulated alginate-PEG and alginate-norbornene mixture. The tuning of the hydrogel's dynamicity is achieved through a photoinitiated norbornene-norbornene dimerization reaction, resulting in relaxation times ranging from 30 seconds to 10 minutes. Human primary corneal keratocytes are cultured on these hydrogels, demonstrating reduced αSMA (alpha smooth muscle actin) expression and increased filopodia formation on slower relaxing hydrogels, resembling their native phenotype. This in vitro model can enable the optimization of stress relaxation for various cell types, including corneal keratocytes, to control tissue formation. Combining stress relaxation optimization with stiffness assessment provides a more accurate tool for studying cell behavior and reduces mechanical mismatch with native tissues in implanted constructs.</p>