Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nakazawa, Kohji

  • Google
  • 1
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells9citations

Places of action

Chart of shared publication
Yabu, Hiroshi
1 / 2 shared
Ito, Koju
1 / 1 shared
Miyamoto, Daisuke
1 / 1 shared
Oku, Keisuke
1 / 1 shared
Ohno, Kyohei
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Yabu, Hiroshi
  • Ito, Koju
  • Miyamoto, Daisuke
  • Oku, Keisuke
  • Ohno, Kyohei
OrganizationsLocationPeople

article

Effect of Pore Size of Honeycomb‐Patterned Polymer Film on Spontaneous Formation of 2D Micronetworks by Coculture of Human Umbilical Vein Endothelial Cells and Mesenchymal Stem Cells

  • Nakazawa, Kohji
  • Yabu, Hiroshi
  • Ito, Koju
  • Miyamoto, Daisuke
  • Oku, Keisuke
  • Ohno, Kyohei
Abstract

<jats:title>Abstract</jats:title><jats:p>The geometrical control of micronetwork structures (NSs) formed by endothelial cells is an important topic in tissue engineering, cell‐based assays, and fundamental biological studies. In this study, NSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb‐patterned poly‐<jats:sc>l</jats:sc>‐lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in NS formation when the pore size is more than 20 m. Furthermore, NS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that NSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • pore
  • polymer