Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malabirade, Antoine

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Robust Grafting of Polyionenes: New Potent and Versatile Antimicrobial Surfaces2citations

Places of action

Chart of shared publication
Guilbaud, Morgan
1 / 3 shared
Bernardi, Sarah
1 / 1 shared
Herry, Jeanmarie
1 / 1 shared
Arluison, Véronique
1 / 1 shared
Leroy, Jocelyne
1 / 13 shared
Debou, Nabila
1 / 1 shared
Renault, Margareth
1 / 2 shared
Bellonfontaine, Marienoelle
1 / 1 shared
Carrot, Geraldine
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Guilbaud, Morgan
  • Bernardi, Sarah
  • Herry, Jeanmarie
  • Arluison, Véronique
  • Leroy, Jocelyne
  • Debou, Nabila
  • Renault, Margareth
  • Bellonfontaine, Marienoelle
  • Carrot, Geraldine
OrganizationsLocationPeople

article

Robust Grafting of Polyionenes: New Potent and Versatile Antimicrobial Surfaces

  • Guilbaud, Morgan
  • Bernardi, Sarah
  • Malabirade, Antoine
  • Herry, Jeanmarie
  • Arluison, Véronique
  • Leroy, Jocelyne
  • Debou, Nabila
  • Renault, Margareth
  • Bellonfontaine, Marienoelle
  • Carrot, Geraldine
Abstract

Polyionenes (PI) with stable positive charges and tunable hydrophobic spacers in the polymer backbone, are shown to be particularly efficient regarding antimicrobial properties. This effect can be modulated since it increases with the length of hydrophobic spacers, i.e., the number of methylene groups between quaternary ammoniums. Now, to further explore these properties and provide efficient antimicrobial surfaces, polyionenes should be grafted onto materials. Here a robust grafting strategy to covalently attach polyionenes is described. The method consisted in a sequential surface chemistry procedure combining polydopamine coating, diazonium-induced polymerization, and polyaddition. To the best of knowledge, grafting of PI onto surfaces is not reported earlier. All chemical steps are characterized in detail via various surface analysis techniques (FTIR, X-ray photoelectron spectroscopy, contact angle, and surface energy measurements). The antibacterial properties of polyionene-grafted surfaces are then studied through bacterial adhesion experiments consisting in enumeration of adherent bacteria (total and viable cultivable cells). PI-grafted surfaces are showed to display effective and versatile bacteriostatic/bactericidal properties associated with a proadhesive effect.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • x-ray photoelectron spectroscopy
  • surface energy