People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jockenhoevel, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Interaction of material- and structural elasticity – an approach towards a physiological compliance in small-caliber vascular graftscitations
- 20233D printed pH-responsive tablets containing N-acetylglucosamine-loaded methylcellulose hydrogel for colon drug delivery applicationscitations
- 2023Warp-knitted fabric structures for a novel biomimetic artificial intervertebral disc for the cervical spine
- 2022Silk Fibroin as Adjuvant in the Fabrication of Mechanically Stable Fibrin Biocomposites.citations
- 2022A polyurethane-based surgical adhesive for sealing blood vessel anastomoses-A feasibility study in pigscitations
- 2021Bioengineered percutaneous heart valves for transcatheter aortic valve replacementcitations
- 2018Development of a Polymer-Based Biodegradable Neurovascular Stent Prototypecitations
- 2017Gefitinib/gefitinib microspheres loaded polyurethane constructs as drug-eluting stent coatingcitations
- 2015Effect of reinforcement volume fraction and orientation on a hybrid tissue engineered aortic heart valve with a tubular leaflet design
Places of action
Organizations | Location | People |
---|
article
Development of a Polymer-Based Biodegradable Neurovascular Stent Prototype
Abstract
<p>Biodegradable stents are not established in neurovascular interventions. In this study, mechanical, radiological, and histological characteristics of a stent prototype developed for neurovascular use are presented. The elasticity and brittleness of PLA 96/4, PLDL 70/30, PCL, and PLGA 85/15 and 10/90 polymers in in vitro experiments are first analyzed. After excluding the inapt polymers, degradability and mechanical characteristics of 78 PLGA 85/15 and PLGA 10/90 stent prototypes are analyzed. After excluding PLGA 10/90 stents because of rapid loss of mass PLGA 85/15 stents in porcine in vivo experiments are analyzed. Angiographic occlusion rates 7 d, 1 month, 3 months, and 6 months after stent implantation are assessed. Histological outcome measures are the presence of signs of inflammation, endothelialization, and the homogeneity of degradation after six months. One case of stent occlusion occurs within the first 7 d. There is a prominent foreign-body reaction with considerable mononuclear and minor granulocytic inflammation combined with incomplete fragmental degradation of the struts. It is possible to produce a stent prototype with dimensions that fit the typical size of carotid arteries. Major improvements concerning thrombogenicity, degradation, and inflammatory response are required to produce biodegradable stents that are suitable for neurovascular interventions.</p>