People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Xinyue
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Neuron cells uptake of polymeric microcapsules and subsequent intracellular release
Abstract
Neuron cells uptake of biodegradable and synthetic polymeric microcapsules functionalized with aggregates of gold nanoparticles incorporated into their shells is demonstrated in situ. In addition to traditionally used optical microscopy, electron microscopy is used both for higherresolution imaging and for confirming the uptake by focused ion beam cross-sectioning of specific cells in situ. Subsequently, physical methods of release are compared to chemical methods wherein laser-induced intracellular release of dextran molecules into the cytosol of hippocampal neuron cells is studied in comparison to biodegradation. Implications of this work for neuroscience, bio-medicine and single cell studies are discussed.