People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popova, Marina N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Hydrothermal Synthesis of Yb<sup>3+</sup>: LuLiF<sub>4</sub> Microcrystals and Laser Refrigeration of Yb<sup>3+</sup>: LuLiF<sub>4</sub>/Silicon‐Nitride Composite Nanostructures
Abstract
<jats:title>Abstract</jats:title><jats:p>The hydrothermal synthesis and characterization of 10%Yb<jats:sup>3+</jats:sup>:LiLuF<jats:sub>4</jats:sub> (LLF) microcrystals are reported. A combination of X‐ray diffraction (XRD) analysis, analytical transmission electron microscopy (TEM), scanning TEM (STEM), energy‐dispersive X‐ray (EDX) spectroscopy), temperature‐dependent Fourier‐transform infrared (FTIR) spectroscopy, and photoluminescence (PL) measurements confirm a scheelite (<jats:italic>I</jats:italic>4<jats:sub>1</jats:sub>/<jats:italic>a</jats:italic>) phase and substitutional doping of Yb<jats:sup>3+</jats:sup> within the microcrystals. Laser cooling to more than 20 K below room temperature in vacuum (10<jats:sup>−3</jats:sup> torr) is demonstrated when irradiating individual microcrystals using a near‐infrared pumping wavelength (<jats:italic>λ</jats:italic> = 1020nm) at a laser power of 40 mW (irradiance of 0.85 MW cm<jats:sup>−2</jats:sup>). The use of these microcrystals is further demonstrated for solid‐state laser refrigeration of an electron‐transparent silicon‐nitride (Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub>) TEM window. A combination of internal luminescence thermometry, heat‐transfer modeling, and control measurements on lithographically patterned Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> optical cavities is used to demonstrate successful bulk laser cooling of Si<jats:sub>3</jats:sub>N<jats:sub>4</jats:sub> TEM windows by ≈15 K below room temperature, opening new opportunities for contactless in situ TEM refrigeration.</jats:p>