People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zayats, Anatoly V.
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Ultrafast hot-carrier dynamics in ultrathin monocrystalline goldcitations
- 2024Ultrafast hot-carrier dynamics in ultrathin monocrystalline goldcitations
- 2021Mode Engineering in Large Arrays of Coupled Plasmonic–Dielectric Nanoantennascitations
- 2021Ultrafast Carrier and Lattice Dynamics in Plasmonic Nanocrystalline Copper Sulfide Filmscitations
- 2019Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersioncitations
- 2019Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersioncitations
- 2019Improving propagation lengths of ultraviolet surface plasmon polaritons on thin aluminium films by ion millingcitations
- 2018DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamondcitations
- 2017Spontaneous Emission in Nonlocal Metamaterials with Spatial Dispersioncitations
- 2017Geometry Defines Ultrafast Hot‐Carrier Dynamics and Kerr Nonlinearity in Plasmonic Metamaterial Waveguides and Cavitiescitations
- 2017Self-Assembled Silver–Germanium Nanolayer Metamaterial with the Enhanced Nonlinear Responsecitations
- 2016Repulsion of polarised particles from anisotropic materials with a near-zero permittivity componentcitations
- 2015Levitating forces on polarized particles near anisotropic metamaterials
- 2015Electromigration Phenomena in Sintered Nanoparticle Ag Systems Under High Current Density
- 2015Optimizing Strontium Ruthenate Thin Films for Near-Infrared Plasmonic Applicationscitations
- 2013Self-Induced Torque in Hyperbolic Metamaterialscitations
- 2011Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substratescitations
- 2010Poling-assisted fabrication of plasmonic nanocomposite devices in glasscitations
Places of action
Organizations | Location | People |
---|
article
Ultrafast Carrier and Lattice Dynamics in Plasmonic Nanocrystalline Copper Sulfide Films
Abstract
<jats:title>Abstract</jats:title><jats:p>Excited carrier dynamics in plasmonic nanostructures determines many important optical properties such as nonlinear optical response and photocatalytic activity. Here it is shown that mesoscopic plasmonic covellite nanocrystals with low free‐carrier concentration exhibit a much faster carrier relaxation than in traditional plasmonic materials. A nonequilibrium hot‐carrier population thermalizes within first 20 fs after photoexcitation. A decreased thermalization time in nanocrystals compared to a bulk covellite is consistent with the reduced Coulomb screening in ultrathin films. The subsequent relaxation of thermalized, equilibrium electron gas is faster than in traditional plasmonic metals due to the lower carrier concentration and agrees well with that in a bulk covellite showing no evidence of quantum confinement or hot‐hole trapping at the surface states. The excitation of coherent optical phonon modes in a covellite is also demonstrated, revealing coherent lattice dynamics in plasmonic materials, which until now was mainly limited to dielectrics, semiconductors, and semimetals. These findings show advantages of this new mesoscopic plasmonic material for active control of optical processes.</jats:p>