Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reig-Escalé, Marc

  • Google
  • 1
  • 10
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Engineering of the Second‐Harmonic Emission Directionality with III–V Semiconductor Rod Nanoantennas20citations

Places of action

Chart of shared publication
Grange, Rachel
1 / 5 shared
Tang, Iek
1 / 1 shared
Frizyuk, Kristina
1 / 1 shared
Timpu, Flavia
1 / 3 shared
Timofeeva, Maria
1 / 4 shared
Bouravleuv, Alexey
1 / 1 shared
Shtrom, Igor
1 / 1 shared
Renaut, Claude
1 / 3 shared
Saerens, Grégoire
1 / 3 shared
Cirlin, George
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Grange, Rachel
  • Tang, Iek
  • Frizyuk, Kristina
  • Timpu, Flavia
  • Timofeeva, Maria
  • Bouravleuv, Alexey
  • Shtrom, Igor
  • Renaut, Claude
  • Saerens, Grégoire
  • Cirlin, George
OrganizationsLocationPeople

article

Engineering of the Second‐Harmonic Emission Directionality with III–V Semiconductor Rod Nanoantennas

  • Grange, Rachel
  • Tang, Iek
  • Frizyuk, Kristina
  • Timpu, Flavia
  • Timofeeva, Maria
  • Bouravleuv, Alexey
  • Shtrom, Igor
  • Renaut, Claude
  • Reig-Escalé, Marc
  • Saerens, Grégoire
  • Cirlin, George
Abstract

<jats:title>Abstract</jats:title><jats:p>The ability to engineer nonlinear optical emission from nanostructures is a key challenge to create efficient and compact components for integrated devices. This paper shows a method to control and manipulate the directionality of second‐harmonic generation emission by engineering geometry and position of rod nanoantennas. Single and dimer nanoantennas are fabricated by slicing III–V semiconductor nanowires with focused ion beam milling. The nonlinear optical response of nanoantennas is tailored by adjusting their length and position to achieve a targeted phase difference. The studied GaAs nanoantennas have a wurtzite structure that allows to achieve preferable directions for the second‐harmonic emission compared to a typical bulk zinc blende structure from top‐down fabricated nanostructures. Wurtzite nanoantennas provide a pure electric dipole response at the second‐harmonic wavelength, which together with pi‐phase control of emitted light is used for designing nonlinear emission patterns. The simulation results show how to redirect the second‐harmonic beam up to 30° and how to tailor the emission profile by adding elements. This method of second‐harmonic generation manipulation and phase array engineering can be applied to different types of nanowires and nanostructures. Nonlinear beam steering with structures from nanowires will foster the creation of compact optical components for integrated circuits.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • grinding
  • zinc
  • semiconductor
  • milling
  • focused ion beam