Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alcañiz, Josep M.

  • Google
  • 2
  • 5
  • 50

Universitat Autònoma de Barcelona

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Sewage sludge as an organic amendment for quarry restoration: Effects on soil and vegetation29citations
  • 2014Discrimination of Soils and Assessment of Soil Fertility Using Information from an Ion Selective Electrodes Array and Artificial Neural Networks21citations

Places of action

Chart of shared publication
Ortiz, Oriol
1 / 1 shared
Carabassa, Vicenç
1 / 1 shared
Mimendia, Aitor
1 / 4 shared
Gutiérrez, Juan M.
1 / 1 shared
Del Valle, Manel
1 / 37 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Ortiz, Oriol
  • Carabassa, Vicenç
  • Mimendia, Aitor
  • Gutiérrez, Juan M.
  • Del Valle, Manel
OrganizationsLocationPeople

article

Sewage sludge as an organic amendment for quarry restoration: Effects on soil and vegetation

  • Ortiz, Oriol
  • Carabassa, Vicenç
  • Alcañiz, Josep M.
Abstract

© 2018 John Wiley&Sons, Ltd. Quarry restoration in Mediterranean environments usually needs organic amendments to improve the substrates used for technosol construction. Digested sewage sludges from municipal wastewater treatment plants are rich in organic matter, N, and P and constitute an available and economically interesting alternative for substrate amendment. However, their pollutant burden and labile organic matter content involve an environmental risk that must be controlled. Moreover, ecological succession in restored areas can be influenced by the use of sludge and should be assessed. To minimize these risks, a new sewage sludge dose criterion relating to its labile organic matter and heavy metal content has been established. Sewage sludge doses currently range between 10 and 50 Mg ha−1. In order to verify the suitability of this dose criterion, 16 areas rehabilitated using sewage sludge located in limestone quarries in a Mediterranean climate in Catalonia (NE Spain) have been assessed. These evaluations focused on physicochemical properties of rehabilitated soils, land degradation processes, and ecological succession. In the short term, 6 months after sludge application, an increment of organic matter content in the restored soils was observed, without significant increases in electrical conductivity or heavy metals content, and with a dense plant cover that contributes to effective soil erosion control. Two years after, ruderal plants were still present but later successional species colonized the restored zones in different degrees. These results suggest that sewage sludge, used as a soil amendment according to the proposed methodology, can safely improve technosol quality without constraints that compromise ecological succession.

Topics
  • electrical conductivity