Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Díaz, G.

  • Google
  • 2
  • 11
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Revisiting the conformational adsorption of <scp>L</scp>‐ and <scp>D</scp>‐cysteine on Au nanoparticles by Raman spectroscopy21citations
  • 2018Classic crystal plasticity theory vs crystal plasticity theory based on strong discontinuities9citations

Places of action

Chart of shared publication
Garzón, I. L.
1 / 1 shared
Fabila, J.
1 / 1 shared
Bazándíaz, L.
1 / 1 shared
Fernándezdíaz, L. M.
1 / 1 shared
Pazborbón, L. O.
1 / 1 shared
Rodríguez-Zamora, Penélope
1 / 1 shared
Salazarangeles, B.
1 / 1 shared
Buendía, F.
1 / 1 shared
Corderosilis, C.
1 / 1 shared
Mosler, Joern
1 / 4 shared
Fohrmeister, Volker
1 / 3 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Garzón, I. L.
  • Fabila, J.
  • Bazándíaz, L.
  • Fernándezdíaz, L. M.
  • Pazborbón, L. O.
  • Rodríguez-Zamora, Penélope
  • Salazarangeles, B.
  • Buendía, F.
  • Corderosilis, C.
  • Mosler, Joern
  • Fohrmeister, Volker
OrganizationsLocationPeople

article

Revisiting the conformational adsorption of <scp>L</scp>‐ and <scp>D</scp>‐cysteine on Au nanoparticles by Raman spectroscopy

  • Garzón, I. L.
  • Fabila, J.
  • Bazándíaz, L.
  • Fernándezdíaz, L. M.
  • Pazborbón, L. O.
  • Rodríguez-Zamora, Penélope
  • Salazarangeles, B.
  • Buendía, F.
  • Corderosilis, C.
  • Díaz, G.
Abstract

<jats:title>Abstract</jats:title><jats:p>Understanding the physical mechanisms of thiolated molecules adsorption on metal surfaces has required copious research, particularly on Au–cysteine systems due to the affinity of sulfur molecules to gold surfaces, as well as the interesting structural modifications that this strong interaction induces and the peculiar optical, chiroptical, and electronic properties of Au(SR) systems. Here, we present vibrational experimental data on the adsorption of <jats:sc>L</jats:sc>‐ and <jats:sc>D</jats:sc>‐cysteine on small gold nanoparticles (&lt;2 nm) by means of Raman spectroscopy. <jats:sc>L</jats:sc>‐ and <jats:sc>D</jats:sc>‐cysteine molecules adopt the same strained conformation upon adsorption on colloidal gold nanoparticles, regaining structure due to the stabilization that the gold nanoparticle induces on the cysteine, reflected in the recuperation of vibrational bands from their polymorphically distinctive crystalline forms. Through the analysis of Raman vibrational modifications after adsorption, we found experimental evidence that confirms a stabilized cysteine conformation locating the carboxyl group in the antiposition (P<jats:sub><jats:italic>C</jats:italic></jats:sub> isomeric rotamer) for both molecules. This result is supported by extensive density functional theory (DFT) calculations and simulated Raman spectra, considering zwitterionic cysteine adsorbed on a Au<jats:sub>34</jats:sub> cluster, emulating experimental nanoparticle sizes. Our Raman spectroscopy experimental and DFT results determine one of the oxygen atoms of the carboxyl group as a second adsorption site after the sulfur atom, confirming that independent of its polymorphism and enantiomerism, zwitterionic cysteine interacts with gold nanoparticles through the thiol group and the carboxyl group as adsorption sites.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • cluster
  • theory
  • Oxygen
  • gold
  • density functional theory
  • Raman spectroscopy