Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Water, Jorrit Jeroen

  • Google
  • 2
  • 11
  • 163

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Molecular weight-dependent degradation and drug release of surface-eroding poly(ethylene carbonate)13citations
  • 2015Three-Dimensional Printing of Drug-Eluting Implants150citations

Places of action

Chart of shared publication
Baldursdottir, Stefania G.
1 / 8 shared
Bohr, Adam
2 / 6 shared
Beck-Broichsitter, Moritz
1 / 3 shared
Harmankaya, Necati
1 / 1 shared
Wang, Yingya
1 / 5 shared
Almdal, Kristoffer
1 / 40 shared
Rantanen, Jukka
1 / 43 shared
Sandler, Niklas
1 / 5 shared
Aho, Johanna
1 / 6 shared
Bøtker, Johan Peter
1 / 9 shared
Mørck Nielsen, Hanne
1 / 4 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Baldursdottir, Stefania G.
  • Bohr, Adam
  • Beck-Broichsitter, Moritz
  • Harmankaya, Necati
  • Wang, Yingya
  • Almdal, Kristoffer
  • Rantanen, Jukka
  • Sandler, Niklas
  • Aho, Johanna
  • Bøtker, Johan Peter
  • Mørck Nielsen, Hanne
OrganizationsLocationPeople

article

Three-Dimensional Printing of Drug-Eluting Implants

  • Rantanen, Jukka
  • Sandler, Niklas
  • Water, Jorrit Jeroen
  • Aho, Johanna
  • Bøtker, Johan Peter
  • Bohr, Adam
  • Mørck Nielsen, Hanne
Abstract

<p>The aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during the processing. Release of NF from the disks was dependent on the drug loading in a concentration-dependent manner as a higher level of released drug was observed from disks with higher drug loads. Disks with 30% drug loading were able to prevent surface-associated and planktonic growth of Staphylococcus aureus over a period of 7 days. At 10% drug loading, the disks did not inhibit planktonic growth, but still inhibited surface-associated growth. Elemental analysis indicated the presence of microdomains of solid drug supporting the observed slow and partial drug release. This work demonstrates the potential of custom-made, drug-loaded feedstock materials for 3D printing of pharmaceutical products for controlled release.</p>

Topics
  • surface
  • elemental analysis