Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fors, Daniela

  • Google
  • 1
  • 6
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013A step toward development of printable dosage forms for poorly soluble drugs90citations

Places of action

Chart of shared publication
Rantanen, Jukka
1 / 43 shared
Sandler, Niklas
1 / 5 shared
Raijada, Dharaben Kaushikkumar
1 / 2 shared
Wisaeus, Erik
1 / 1 shared
Genina, Natalja
1 / 8 shared
Peltonen, Jouko
1 / 24 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Rantanen, Jukka
  • Sandler, Niklas
  • Raijada, Dharaben Kaushikkumar
  • Wisaeus, Erik
  • Genina, Natalja
  • Peltonen, Jouko
OrganizationsLocationPeople

article

A step toward development of printable dosage forms for poorly soluble drugs

  • Rantanen, Jukka
  • Sandler, Niklas
  • Raijada, Dharaben Kaushikkumar
  • Fors, Daniela
  • Wisaeus, Erik
  • Genina, Natalja
  • Peltonen, Jouko
Abstract

The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs.

Topics
  • Deposition
  • scanning electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • High-performance liquid chromatography