People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ito, Keita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Warp-knitted fabric structures for a novel biomimetic artificial intervertebral disc for the cervical spine
- 2022Surface texture analysis of different focal knee resurfacing implants after 6 and 12 months in vivo in a goat modelcitations
- 2022Surface texture analysis of different focal knee resurfacing implants after 6 and 12 months in vivo in a goat modelcitations
- 2022A bovine nucleus pulposus explant culture modelcitations
- 2021Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulationcitations
- 2020Accuracy of beam theory for estimating bone tissue modulus and yield stress from 3-point bending tests on rat femoracitations
- 2020T2* mapping in an equine articular groove model - visualizing changes in collagen orientationcitations
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regenerationcitations
- 2019Resorption of the calcium phosphate layer on S53P4 bioactive glass by osteoclastscitations
- 2017Magnetic domain walls in nanostrips of single-crystalline Fe4N thin films with fourfold in-plane magnetic anisotropycitations
- 2016Mechanical properties of bioactive glass putty formulations
- 2016Silk fibroin as biomaterial for bone tissue engineeringcitations
- 2013A new model to study healing of a complex femur fracture with concurrent soft tissue injury in sheepcitations
Places of action
Organizations | Location | People |
---|
article
A bovine nucleus pulposus explant culture model
Abstract
<p>Low back pain is a global health problem that is frequently caused by intervertebral disc degeneration (IVDD). Sulfated glycosaminoglycans (sGAGs) give the healthy nucleus pulposus (NP) a high fixed charge density (FCD), which creates an osmotic pressure that enables the disc to withstand high compressive forces. However, during IVDD sGAG reduction in the NP compromises biomechanical function. The aim of this study was to develop an ex vivo NP explant model with reduced sGAG content and subsequently investigate biomechanical restoration via injection of proteoglycan-containing notochordal cell-derived matrix (NCM). Bovine coccygeal NP explants were cultured in a bioreactor chamber and sGAG loss was induced by chondroitinase ABC (chABC) and cultured for up to 14 days. Afterwards, diurnal loading was studied, and explant restoration was investigated via injection of NCM. Explants were analyzed via histology, biochemistry, and biomechanical testing via stress relaxation tests and height measurements. ChABC injection induced dose-dependent sGAG reduction on Day 3, however, no dosing effects were detected after 7 and 14 days. Diurnal loading reduced sGAG loss after injection of chABC. NCM did not show an instant biomechanical (equilibrium pressure) or biochemical (FCD) restoration, as the injected fixed charges leached into the medium, however, NCM stimulated proliferation and increased Alcian blue staining intensity and matrix organization. NCM has biological repair potential and biomaterial/NCM combinations, which could better entrap NCM within the NP tissue, should be investigated in future studies. Concluding, chABC induced progressive, time-, dose- and loading-dependent sGAG reduction that led to a loss of biomechanical function. Keywords. biomechanics | intervertebral disc | matrix degradation | low back pain | proteoglycans.</p>