People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bechtold, Joan E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2011Parathyroid hormone treatment increases fixation of orthopedic implants with gap healingcitations
- 2011The combined effect of parathyroid hormone and bone graft on implant fixationcitations
- 2009Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compactioncitations
- 2008Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexturecitations
- 2005In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implantscitations
Places of action
Organizations | Location | People |
---|
article
Local bisphosphonate treatment increases fixation of hydroxyapatite-coated implants inserted with bone compaction
Abstract
<p>It has been shown that fixation of primary cementless joint replacement can independently be enhanced by either: (1) use of hydroxyapatite (HA) coated implants, (2) compaction of the peri-implant bone, or (3) local application of bisphosphonate. We investigated whether the combined effect of HA coating and bone compaction can be further enhanced with the use of local bisphosphonate treatment. HA-coated implants were bilaterally inserted into the proximal tibiae of 10 dogs. On one side local bisphosphonate was applied prior to bone compaction. Saline was used as control on the contralateral side. Implants were evaluated with histomorphometry and biomechanical push-out test. We found that bisphosphonate increased the peri-implant bone volume fraction (1.3-fold), maximum shear strength (2.1-fold), and maximum shear stiffness (2.7-fold). No significant difference was found in bone-to-implant contact or total energy absorption. This study indicates that local alendronate treatment can further improve the fixation of porous-coated implants that have also undergone HA-surface coating and peri-implant bone compaction.</p>